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FOREWORD

This report documents the effort performed under contract number N00024-
80-C-6292 for the Naval Sea Systems Command Code 63R, and covers the
period from October 1980 to September 1981.. The study has considered the
use of LMS adaptive cancellation to suppress convergence zone surface rever-
beration in a bistatic sonar. The work was directed by Mr. Daniel Porter

of NAVSEA Code 63R.




ABSTRACT

~

This report considers the cancellation of surface reverberation from the
convergence zone (CZ) using an LMS multiple canceller structure. In CZ
operations, this surface reverberation is often the limiting factor in the de-
tection of low doppler targets. The multiple reference canceller approach is
bistatic in that hydrophones spatially separated from the active sonar trans-
mit /receive array are used as references to cancel the CZ surface reverber-
ation. When the target is submerged below the CZ, providing spatial separa-
tion of the target and surface, it may be possible to spatially reject the CZ
surface reverberation but not the target, allowing detection.

The first phase of the study, reported in this document, concentrates
on the ability of the canceller to reject the reverberation in the absense of
signal. The CZ surface reverberation is modeled as an extended source with
range extent limited by the width of the CZ and horizontal extent limited by
the horizontal directivity of the transmitter. When viewed from typical con-
vergence zone ranges, this source appears to have narrow angular extent.
Using the narrow extended source model, expressions are developed for the
second order statistics of the canceller output. It is shown that the solution

A
/=N )
to the spatial cancellation problem with a narrow, extended source 1s fune-

tionally equivalent to the linear prediction of a bandlimited, temporal sequence.

This equivalence not only allows use of the results of linear prediction theory
in the spatial case, but provides an intuitive feel for the parametric behavior
of the spatial canceller.

Using the analytical results, the cancellation achieved is examined as a
function of the reverberation and canceller parameters. It is shown that as

the number of references, K, is increased, the cancellation improves rapidly




up to some threshold value, say, K=Ko, the improvements diminish rapidly.
Given the computational cost of adding a reference, the use of K>Ko refer-
ences may not be justified. The value of Ko is determined approximately,
and provides a design guide for the selection of the number of references
in any given sonar situation. Significantly, effective cancellation of the
reverberation can be achieved using less than four references. Extensive
curves showing the parametric dependencies of the cancellation on the de-
sign parameters are given as design tools. The report also describes
several configurations of the LMS canceller structure for use in the non-
stationary reverberation environment and discusses their performance.

The second phase of this study will focus on two areas: the incorpora-
tion of a plane wave signal in the model; and the verification of the extended
source model as representative of the CZ surface reverberation. This report
on the first phase of the study includes some initial determination of the
response of the canceller to the signal. These results must be extended to
include the effect of the primary array and the detailed characteristics due
to separation of the target and the reverberating surface. The performance
of the canceller will ultimately be evaluated in terms of the improvement in
detection performance provided by the canceller over that achieved without
the canceller. Again, this will be examined as a function of the canceller
design parameters, reverberation extent, and the spatial separation between
surface and target.

To assess the validity of the analytical models, a computer simulation
of the multiple canceller structure will be developed. This will first be
tested against computer generated data simulating the active sonar in the

CZ detection mode. More importantly, the simulation will be run on actual




—r

data from sea tapes to be provided by the Navy. Any changes to the models

necessitated by the simulation runs will be made in the analysis and the

effect of these changes on canceller performance examined.
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1.0 INTRODUCTION




1.0 INTRODUCTION

This is the final report on the first phase of a study of a technique for
processing against surface reverberation from the convergence zone in an
active sonar. When attempting to detect a low doppler, submerged conver-
gence zone (CZ) target, this backscatter of the transmitted waveform from
the surface above the target can be the limiting background noise. The
concept involves bistatic or multistatic operation, in which reference
hydrophones spatially separated from the primary transmit/receive array
of the sonar are used to suppress the reverberation in the primary array
output. This is done using a Least Mean Square (LMS) adaptive multiple
canceller structure, which has been used in the past to suppress point

[1] . The CZ surface reverber-

interference in the output of a beamformer
ation, however, appears as a narrow extended acoustic interference, so
this study addresses the performance of the multiple canceller concept
with extended sources.

The most common (and most practical) algorithm for the implementation
of spatial noise cancellation is the Least Mean Square (LMS) algorithm de-
scribed in [2]. Define the inputs to the algorithms as

th

d(n) sample time

desired input at n

h

x(n) reference input at nt sample time.

The LMS algorithm stores the M-dimensional data vector

X(n) = [x(n), x(n-1), ....x(n-M+1)}T (1-D

L]
and computes the filter output,

ym) = WY (n) X (n) (1-2)

with




T
W(n) = [wo(n), Wi(n), ..., Wy (n)]

the weight vector of length M. The weights are updated recursively to
minimize the mean squared value of the error signal, defined as

€(n) = d(n) - y(n) (1-3)
This is done by means of a gradient descent approach in which the actual
gradient of the mean squared error is replaced by an estimate of the gradi-
ent extracted from the data vector, X(n). This yields the very simple
weight update equation

W(n+1l) = W(n) +pe (n) X(n) (1-4)
where pis a weight update coefficient that controls the rate of convergence
and stability of the algorithm.

When the'inputs to the LMS adaptive structure are zero mean random
sequences that are at least wide sense stationary, the weights given by
(1-1) can be shown to converge in the mean to the discrete Wiener filter
provided u is sufficiently small to assure stability 3. That is, if E[x] de-
notes the expected value of x and

Elx(n)] = 0 W

E[d(n)] =
R = E[X(m X' (]
K = 0,1, ... K-1 (1-5)
and

Tix = E[d(n) X(n)]

J

then

tim E(W(n)] = R 'r (1-6)

n-o




under the appropriate conditions on p. Reference [3] shows that (1-6)
occurs if

0< p< l/xmax (1-7

where >‘m

ax is the largest eigenvalue of the covariance m;atrix. Rxx'

Further, it is shown that the mean of the weights of the adaptive filter
approach the Wiener solution, (1-6), approximately exponentially with the
time constant

1
T

min
where T is expressed in iterations of the filter and A min is the smallest
eigenvalue of the covariance matrix, Rxx'
Because the weights are computed from the random input data in (1-4),
they are themselves random, and exhibit fluctuations about the discrete
Wiener solution, (1-6). Therefore, the power in the error, ¢(n), is greater
than the error that would be achieved by the Wiener weights. This increase
in error power due to algorithm noise is termed the misadjustment {3] of
the algorithm. In general, due to the recursive nature of (1-4), even the
second order statistics of the weights cannot be determined analytically in
closed form. As will be discussed below, one way of approximating the
weight variance is to develop a frequency domain model for the adaptive
filter, as in [4], and to then use [5].
| Now, consider using this LMS adaptive filter to adaptively cancel a
single plane wave interference from the output of a beam steered in the di-
rection of a signal of interest. A single hydrophone is chosen as a refer-
ence, providing the reference input to the LMS algorithm, x(n). The de-

sired input, d(n), is the output of the beam steered toward the signal.




which is assumed to arrive from a different angle than the interference.

Because the interference dominates both the reference hydrophone and
beam outputs, the adaptive filter minimizes the mean squared value, or
power, in ¢ (n) primarily by eliminating the interference component. It
does this by attempting to insert a delay in the reference input equal to
the propagation delay between the phase center of the primary array and the
reference hydrophone, plus a gain equal to the primary array gain. The in-
terference component of the filter output is then nearly coherent with the
primary array output, so that the interference is cancelled in the error wave-
form, which serves as the canceller output. In order to cancel the signal, the
filter would have to adapt to the propagation delay and array gain for the
signal, which differ from those for the interferences because the arrival
angles differ. In doing this, the structure would pass the much stronger
interference, increasing the mean squared error. The adaptive algorithm
therefore converges to a solution which cancels the interference but passes
the signal. In a spatial sense, this can be viewed as steering a null in the
beam response in the direction of the plane wave interference. Generally, the
signal will be somewhat attenuated by the cancellation process, but this will
be tolerable in view of the much greater rejection of the interference.

If the interference must be modelled as more than one, say K, plane
wave sources, then, in general, K spatially separated references will be ]

needed to allow spatial nulls to be steered in the direction of each. The LMS

algorithm can be configured to use K reference inputs as follows. Let




th

reference input at nth sample time (k =0, 1, ... K-1)

xk(n) = k
and let the algorithm store the K data vectors of length M,

X, () = [x(n), X (-1, ... x (n-M+DIT, k=0, 1, ... x-(11~9)

The LMS algorithm computes

V(M = Wi X, (), k=0, 1, ... K-1 (1-10)
where W, (n) is the Kt weight vector, with the error given by
K-1
€(n) = d() - yk(n),k=0, 1, ... K-1 (1-1D)
k=0

The weights are updated according to

We+) = W (n) + e(m) X, (n), k=0, 1, ... K-1 (1-12)

Note that each implementation of (1-10) is a non-recursive digital filter

with time varying weights, so the multiple reference LMS algorithm can be
represented as shown in Figure 1-1. Each reference input is passed through
a non-recursive digital filter, the filter outputs used to form the error, ¢(n),
by (1-13), then the error fed back to update the filter weights according to
(1-4).

In many practical situations, the computational requirements of implement-
ing (1-16), (1-17), and (1-18) are prohibitive, and the cancellation must be
done using the so-called frequency domain LMS algorithm [4, 6]. The fre-
quency domain algorithm first Fast Fourier Transforms (FFT's) the reference

and primary inputs, forming
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Figure 1-1. Multiple Reference LMS Algorithm




ith

Di(n) = FFT coefficient at time n

M-1 L 2m .
“J g mi
= z d(m + nM) e (1-13)

m=0

and

Xik(n) = ith FFT coefficient of kth reference at time n

M-1 . 2w .
v ™
= z xk(m+nM)e i=0,1, ... M-1) (1-19)
m=0

where M is again the dimension of the )_(k(n) data vectors. A single tap com-
plex LMS algorithm is then performed independently in each frequency bin.
Let

th

Fik(m = the frequency domain weight in the i~ FFT bin for the

kth reference at time n

Then the LMS filter output in the jth bin for the k' reference at time n is
Yik(n) = Fy(n) Xy (n) (1-15)
and the error in the ith FFT bin (used to update all K filters) is
K-1
En) = Dym) - D Yy (m) (1-16)
k=0

The complex LMS algorithm [7] gives the updated weights as

Fp(n+l) = Fp(n) +  E/(n) Xy (n) (1-17)




If required, the time domain canceller output can be obtained by inverse

FFTing the Ei(n).

While this algorithm gives significant computational savings over the
time domain approach, it is not an exact implementation of the time domain
algorithm and can give different results, even in relatively simple cases [4].
A number of practical cancellation problems have been solved using the fre-
quency domain approach, however [8, 9]. When it can be used, it has some
analytical advantages in that it may be possible to determine the variance
of the frequency domain weights as well as the mean using [8]. This allows
the effects of algorithm noise to be considered analytically.

The CZ surface reverberation differs from interferences usually associ-
ated with LMS spatial cancellation in three ways:

(1) Extent; The first CZ will nominally appear at a range of 30 miles
and have a width of; approximately 2 miles, so that it appears to
have a narrow vertical angular extent. In addition, most modern
active sonars have horizontal directivity, so that only a hori-
zontal sector of the CZ is illuminated. The reverberating CZ sur-
face therefore appears as an extended source in both horizontal
and vertical angles, Within this sector, the reverberation is
made up of a multitude of individual reflections, often regarded
as uncorrelated [10]. The surface may therefore be regarded as
narrow extended source exhibiting no correlation from angle to

angle. This study therefore addresses the performance of the

canceller with such a source.




(2) Non-stationarity; In the active sonar environment, the input

statistics to the canceller are markedly non-stationary, consist-
ing of a transmit period followed by periods of rever.beration
from various sources, intervals of ambient noise only, and signal
returns. Although the derivation of the LMS adaptive canceller
assumes stationarity of the inputs, it has often been applied in

non-stationary situations by making its convergence time short

enough to track the non-stationarities. An approach to the ap-
plication of the LMS algorithm in the reverberation environment
is also developed in this study and its performance analyzed.

(3) Noise Related to Signal: In most applications of the adaptive

canceller, the signal and noise are derived from different
sources, and are therefore uncorrelated. In the detection of a
target against the background of CZ surface reverberation, the
noise consists of many reflections of the transmitted waveform.
Since reflections of the waveform also make up the signal, the
signal and noise are related. This will not be of central interest
here, since this report concentrates on the signal absent case.
Suppose that instead of consisting of one or more discrete plane wave
sources, the interference is truly extended in that it is distributed in
angle over some finite sector. Given the argument that the adaptive can-
celler is steering nulls in the overall response pattern in the direction of the
interference, it would seem that an extended source could never be completely

cancelled. However, as more and more references are added (K increased),

steering an increasing number of nulls to the interference, it seems clear

o




that the amount of additional cancellation achieved per added reference

would eventually become quite small. Since the computational cost of adding
a reference is significant (requiring an additional LMS adaptive filter), at
some point the improvement will not be worth the cost. This study examines
the performance of the multiple canceller approach with extended sources
using a Wiener filter model. The amount of cancellation achieved is examined
as a function of the source extent. the number of references, and their
lccation with respect to the primary array. Of particular interest is the
following
a. The degree of cancellation theoretically achieveable for an
extended source
b. The selection of the number of references for a given source ex-
tent, taking into account both cancellation performance and
computational cost.

The Final Report is divided into three sections, the first of which is this
Introduction. Section 2 summarizes the results of the study, describes the
general approach used, and discusses the models of the adaptive canceller
and extended interference source. The detailed development of the models
and the derivations of the results given in Section 2 are included as Appen-
dices A through K. Section 3 presents the general conclusions of the study
as to the applicability of the LMS cancellation technique to the rejection of
surface reverberation from the convergence zone. It also discusses areas

where additional study is needed.
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2.0 SUMMARY OF RESULTS

This section presents the results of the study in summary form without
detailed derivations, which are included in the Appendices. Where results
are best illustrated by the use of graphs, typical cases are shown here and
the complete set of curves given in the Appendices. Section 2.1 discusses
the application of the LMS algorithm in the non-stationary reverberation
environment. Section 2.2 develops the model for the extended interference
source and relates it to surface reverberation from the convergence zone.
In Section 2.3, the frequency domain Wiener filter model for the adaptive
canceller is derived. Section 2.4 shows that there exists an equivalence be-
tween the linear prediction of a bandlimited temporal random process and the
cancellation of an extended source. This equivalence is used to apply a
number of results from linear prediction theory to the problem of interest
here. The general results of Section 2.4 are then specialized to a source
that is uniformly distributed in angle and spatially uncorrelated in Section
2.5. This model is shown to be a reasonable model for CZ surface reverbera-
tion. Performance predictions for the multiple canceller in this enviornment
are presented, and design criteria given for selection of hydrophone spac-
ing and number of references. Section 2.6 diséusses the performance of the
canceller with a source producing an exponential CSD at the hydrophone
outputs, and compares this performance to that achieved with the uniform
source of Section 2.5. Section 2.6 investigates at the effects of the non-
stationarity of the reverberation on the performance of the adaptive cancel-
ler. Finally, Section 2.7 takes a preliminary look at the response of the

array to a plane wave signal in the presence of an extended source.
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2.1 Canceller Structure for Application in the Non-Stationary Reverber-

ation Environment. As pointed out in the Introduction, the development of

the LMS canceller structure is based upon the stationarity of the inputs,
although the adaptive algorithm itself has been applied to non-stationary
problems {9, 11]. This is done by making the time constant of the adaptation
process short enough that the weights can "track" the non-stationarities.
This requires use of value of plarger than would be needed in a stationary
environment with a resulting increase in algorithm noise. There is there-
fore a trade-off between the ability of the algorithm to follow input dynamics
and the algorithm noise.

The application of the LMS canceller approach being considered here
departs from this usual approach to non-stationary inputs. The active sonar
environment, taken as a whole, is markedly non-stationary, consisting of
periods during which reverberation from various sources (surface, bottom,
convergence zone, etc) dominates the noise field. Between these periods of
reverberation the ambient noise field will be the main limitation on sonar per-
formance. However, within a period of reverberation from a particular source,
the reverberation is often regarded as a stationary random process. Hence,
it may be possible to avoid the need for increasing u to track input dynamics
by adapting the weights only when the convergence zone (CZ) reverberation
is present. During these periods, the reverberation dominates the ambient
noise component and the signal, so it should be possible to detect its presence
reliability.

These considerations suggest the following canceller structure. Because

the propagation distance to the CZ is so much greater than that associated




with other forms of reverberation, it is possible to exclude all other rever-

beration from influencing the canceller by freezing the weights for T, sec-
onds after each transmission. After Tw seconds, it can be assumed that the
input to the canceller is either ambient noise or CZ surface reverberation
(possibly with a target present). The presence of the reverberation is then
determined by a simple energy detection in the reverberation band of the
primary array output, and the weights adapted only during its presence.
This structure is shown schematically in Figure 2-1. If the detector can de-
termine the presence of the CZ reverberation perfectly, the weights only
adapt in the presence of the reverberation. Given that this reverberation is
stationary, as assumed above, the inputs as seen by the weight adaptation
process are stationary at all times, so that they converge to the optimal
weights that would occur if the reverberation were always present. The
selection of p can be made solely on the basis of acceptable algorithms mis-
adjustment. False alarms in the detector will cause the weights to adapt
in an ambient noise background, which will degrade the effectiveness of the
canceller. False dismissals in the detector will result in the weights being
frozen during the presence of the CZ reverberation, so that the algorithm
will take longer to change. It is anticipated, though, that the high rever-
beration to ambient noise ratio associated with this problem will allow detector
operation at a low probability of error.

An alternative approach can be based on the well known fact {10] that
the LMS adaptive algorithm adapts much more rapidly in an environment

producing correlation between its inputs (such as reverberation from any
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source) than to one producing uncorrelated inputs (such as ambient noise
field would). That is, the filter "learns" the correlation properties of an input
rapidly in comparison to the way it "forgets" those properties once the cor-
relation disappears. Therefore, in order to maintain the properties of the
convergence zone reverberation in the filter weights, it is first essential
that all other forms of reverberation be excluded from the adaptation proc-
ess by inhibiting the adaptation of the weights for TW seconds after each
transmission. From the point of view of the adaptive weights, then, the
input consists of the intervals [nT + Tw, (n+1)T]} forn=1, 2, ... con-
catenated together to form a continuous input sequence. This concatenated
input is then sampled every T seconds to produce the inputs x(n) and d(n).
The question is how much the adaptation in ambient noise only, albeit slow,
degrades the operation of the canceller when the reverberation actually com-
mences. This is considered in Section 2.7,

2.2 Model for the Acoustic Field. The majority of the results of this

study are based upon a far field extended source model developed in
Appendix A for the particular array geometry shown in Figure 2-2. In this
geometry, the K reference hydrophones are configured in a line array with

an inter-hydrophone spacing of d feet. These K references are to be used

in an LMS canceller to suppress an extended interference from the output of

a single omnidirectional hydrophone located md feet from the nearest reference
and colinear with the reference line array. In this model, the transmit/
receive array of the sonar has been replaced by a single omnidirectional hy-

drophone. The impact of this simplification is discussed later.
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The extended interference is assumed to be distributed in a horizontal
plane that contains the line array, as shown in Figure 2-2. The acoustic
energy arriving at the array from the interference at any angle, ¢ , is
assumed to produce a plane wave across the entire array (including refer-
ences and primary). This requires that the distance to any point on the
interference be large in comparison to the array dimensions so that the
wavefront curvature is negligible. As is usually done with plane wave
models, it is also assumed that the propagation losses from a point on the
source to any hydrophone is the same, so that the difference in propagation
to different hydrophones is characterized in terms of delay only. The com-
mon propagation losses can be lumped with the source characteristics.

Statistically, it is assumed that the acoustic energy arriving at each
angle, ¢ , from the interference is a zero mean, stationary random process.
In the general model, the arrivals from two angles, ¢1, and ¢2, are allowed to
be correlated, producing a cross-spectral density (single frequency correla-
tion) between the arrivals of SI(d)l, ¢>2, w). Thus the spectral density of the
intererence at any arrival angle, ¢, is SI(¢, ¢ , w). In addition to the inter-
ference, the acoustic field is assumed to have an isotropic background. pro-
ducing zero mean noise at the output of each hydrophone. This noise is
assumed to be uncorrelated from hydrophone to hydrophone and to have
spectral density crrz_l(u) .

Next, in Appendix A.1l the model is restricted to narrow extended inter-
ferences that are distributed over a narrow angular sector [¢0 -@, ¢0 +&].
This allows an approximation leading to a two-dimensional Fourier transform

relationship between the source angular distribution and the cross-spectral
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density (CSD) of the hydrophone outputs. Appendix A.2 adds the additional
assumption of a spatially uncorrelated interference, for which

Sl(¢1’ ¢2,U) = SI(¢1a"J)6(¢1 - ¢2) (2_1)
In this case, the CSD between the outputs of the pth and qth reference

hydrophones is given by

‘]"fg- (p-q) cosg, ® +j‘"—c:1 (p-q) ¢siné,
se(p,q,w) = e f SI(¢0+¢"") e d¢

— %

2
+ an(w) 6pq

(2-2)
which is again a Fourier transform relationship. Expression (2-2) is ex-
ploited in Section 2.4, which describes some general results for the multiple
canceller structure.

Although it is not immediately apparent that this simple, far field model
can be used to model surface reverberation from the convergence zone,
Appendix B considers two source geometries representative of this reverbera-
tion and shows that they reduce to the form of the far field model under very
reasonable assumptions. Suppose that the sonar transmitter has a horizontal
beamwidth of 28, degrees, so tﬁat it only illuminates a sector of the annulus
comprising the convergence zong, which has inside radius RI and outside
radius R 0 The illuminated sector is assumed to be centered about the angle

8., and the transmitter/receiver is located D feet below the surface. as

o

shown in Figure 2-3. The reference hydrophones are placed d feet apart
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along the negative y axis, with the distance between the primary and the
closest reference md feet. The reverberation from each point on the sector
of the annulus is assumed to propagate via a straight line (direct) path to
the hydrophones, and can be regarded as a plane wave across the array.
The ambient noise is assumed to produce noise with spectral density orzl(w)
which is uncorrelated from hydrophone to hydrophone. This can be viewed
as a model of the convergence zone surface reverberation, except that the
propagation paths are direct rather than along the refracted paths associated
with the convergence zone. It is shown in Appendix B that when the rever-
beration is spatially uncorrelated, the shape of the propagation paths does
not affect the hydrophone CSD except in terms of the overall interference
strength (this is incorporated in the interference spectrum). The assumption
that the reverberation is uncorrelated from point to point is commonly made
in active sonar (see, for example, Van Trees [9]) and will be made here.

Now,. let SI( P, 8, w) be the spectral density of the reverberation from
the point on the surface at range P and angle 6, with the propagation losses
incorporated in the source. It is assumed that this spectral density is
separable in range,

SI(D. 6, w) = §[.(P,w) SIa(G,w) (2-3)

Then under the additional assumptions that 8, is small enough that

COSO1 ~ 1

sin 91 =~ 6 _ (2-4)

h

and that D <<#, the CSD between the pt and qth hydrophones in the array

is

20




wd
-J5 (p-q) cos g

. _ 2 ,
ae(p,q,w) = nn(u«) qu +e Gr(w)
01
% j“;—d (p-q) 6sin 60
SIa(6+eO.w) e dg (2-5)
-9
with -4
Ro
2

Comparing (2-5) with (2-2) shows that the model illustrated in Figure 2-3
produces the same form for the hydrophone output CSD as the far field
source with SI(¢+¢o.u) replaced by the angular source spectral density ‘

S (9+00,w)and with the additional factor Gr(u ). This additonal factor can

Ia

just be regarded as part of the source spectral density in the far field

model of Appendix A. Hence, the far field model developed in Appendix A

can be applied to the CZ surface reverberation problem.

Appendix B also develops a second model for the CZ reverberation that
utilizes the assumption of plane wave arrivals at the array from each point
on the source, but distributes these arrivals on the horizontal sector, g
€ [00 - 61, 90 +61] , and the vertical sector.»eﬁ’0 -® ,¢0 +®] as shown in

Figure 2-4. When the reflections from each point on the surface are uncor-

related, the arrivals from different angles will also be uncorrelated. As be-

fore, the horizontal extent is limited by the horizontal directivity of the
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transmitter. The vertical sector comprises those angles producing CZ propa-

gation. Let SI(O, ®..) be the spectral density of the arrival at horizontal

angle, g, and vertical angle, ¢, and assume that

SI(G,G’.u) = §,,.(0,w) SIV(¢,‘-) (2-7)

Ih
That is, SI(B $ . ) is separable into a horizontal density, SIh(B, «), and a
vertical density, SIv(d),w). It is assumed that e1 is small in the sense of
(2-4), and that

max [¢0 -Q,o0+¢]<< 1 (2-8)

so that cos[max[¢0 -, ¢0 +®]] = 1. This requires that the vertical arrivals

be clustered near horizontal, and is consistent with CZ arrivals in a surface

ship sonar. Then the CSD of the outputs of the pth and qth hydrophone is
9 _].w_cd_ (p-q) 00590
se(p.q,w) = on(w) qu + e Go(w)
8
]-‘%:l (p-q) 8sin 8,
SI(B,w) e de
"9 (2-9)
& + 9
- a2
where Gfb(w) = SIV(¢>,»)¢ d¢
(bo -

Again, comparison of (2-9) with (2-4) reveals that the model of Figure 2-6

produces the same hydrophone CSD as the far field model of Appendix A,

so that the latter can be used to study the CZ surface reverberation problem.
An important special case of the far field model is that of uniform source

spectral density

2

SI(¢,w) = (2-10)
q, otherwise




The hydrophone output CSD then becomes

oo jwd .
sin [? (p q)ésm%]

1wd

2 2
s (P.q.w = o (W3 +0 (W)
€ n pq ! 3o (p-q) sim%’0

_wd
. JZ (p-q) cos 4

(2-11)
Note that for the surface model (Figure 2-3) and the vertical arrival model
(Figure 2-4), (2-10) is replaced by

02(2), 0¢€l8y - 6, 6, +8,]

[ 0 1’ °0 1
Sla(o’w) i SIV(O,w) i 0, otherwise
This requires that the reverberation intensity does not vary as a function
of bearing within the transmitter main lobe.
It is important to note the behavior of the hydrophone output CSD,

se(p,q,w) . as the extended source approaches end fire, ¢ 0° 0. Whene =0,

0
(2-2) reduces to

¥ i
» 2 % (p-a)
$o(P.q.wi =crn(w)5pq+ SI(¢‘O +9,w) de| e (2-12)
-d
which is exactly the CSD produced by a single end fire plane wave with
spectral density
L 4
S;3; +¢, ) do
i

Similarly, when ¢0 =0, (2-11) becomes




d
2 P % ()
se(p.q.u)) = Un‘qu + 2(’01 (W) e (2-13)

which is again the hydrophone CSD of an end fire plane wave. Further,
(2-11) indicates that as the source approaches endfire, its hydrophone out-
put CSD broadens in terms of the difference (p-q), so that it looks like the
CSD is that of a narrower source. It is as if. the effective extent of the

source is 2%sin ¢ rather than the actual source extent of 2¢. It is important

0
to show that this apparent narrowing of the extended source near end fire
is a characteristic of the physical problem of cancelling an extended source
using a line array of references, and not just an anomaly introduced by the
model or by approximations within the model.

Although analysis of the general case has not been completed, a number
of numerical evaluations of the exact hydrophone output CSD have been
made for the special case of a uniform source. These agree very well with
the CSD derived using the narrow source approximation, given by (2-11) in
the case where 0121 (w) = 0. This tends to support the validity of the model

near end-fire in the uniform source case, and suggest that the apparent

source comparession actually occurs.

rectional hydrophone but an array of hydrophones steered in some particular
direction. Appendix I investigates the applicability of the single hydrophone

model to this more realistic case. It considers a primary input derived from

In most cases of interest, the primary sensor will not be a single omnidi- -
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a line array of N hydrophones spaced every dp feet and located a distance
Ld feet from the reference array as shown in Figure 2-5. The results show
that the equivalent model of Figure 2-6, in which the primary array is re-
placed by a single directional hydrophone, produces the same statistics for
the reference and primary inputs if
(a) the single primary hydrophone is placed Ld feet from the ref-
erence array
(b) the primary hydrophone has the same directional response, H(é)
as the primary array
(c) the ambient noise component of the primary hydrophone output
has spectral density
N-1
2wy = | Y al|olw) (2-14)
n=0
where a, is the shading applied to the nth hydrophone and orzl(w) is the
spectral density of the output of a single hydrophone on in the primary array
being replaced. Hence, in the computation of the spectral density of the
primary hydrophone output and the cross-spectral density between the pri-
mary and the references (as required to evaluate the canceller performance,
Section 2.3), the source CSD function SI(qb, w) i.e. modified by the response,

H(d).

2.3 Model for the Adaptive Canceller. In this study, the performance
of the adaptive canceller is analyzed under the assumption that the inputs

to the canceller are stationary random processes. This requires that the
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weights only be adapted during the time when the reverberation is present.
Section 2.1 described a canceller configuration in which the weights are
frozen except when a detector indicates that the CZ surface reverberation
is present. The analysis which is discussed here therefore applies to this
canceller structure when the detector determines the presence of the re-
verberation with no errors. Also described in Section 2.1 is a second con-
figuration of the adaptive canceller to reverberation in which the weights
continue to adapt when only ambient noise is present. The performance of
this canceller configuration will therefore be degraded somewhat from the
performance predicted using the stationary input canceller model. If the
adaptation in ambient noise is very slow and the length of time during which
only ambient noise is present is relatively short, then the results using the
stationary model will be a good approximation to the actual performance of
the second canceller configuration. The degree to which the performance of
these two canceller configurations is degraded from the stationary model is
discussed in Section 2.7 and analyzed in detail in Appendix J.

The multiple LMS adaptive canceller structure of Figure 1-1 is analyzed
by replacing each of the LMS adaptive filters with a continuous Wiener filter.
In a stationary environment, the LMS adaptive filter converges in the mean
to the discrete Wiener filter. In turn, the discrete Wiener filter will be a
good approximation to the continuous Wiener filter if the sampling rate high
enough and the filter long enough for the discrete impulse response to ap-
proximate that of the continuous filter. This will be the case in any well
designed adaptive canceller. Therefore, the mean of the converged LMS

adaptive filter weights (which comprise its impulse response) will be well
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approximated by the continuous Wiener filter. The actual weights (impulse
response) of the converged LMS adaptive canceller randomly fluctuate about
the mean weights, and these fluctuations increase the canceller output power
above that of the discrete Wiener filter. However, these fluctuations can be
made arbitrarily small in a stationary environment by making the feedback
coefficient, y, small. The use of the continuous Wiener filter to model the
LMS adaptive canceller can therefore be regarded as neglecting the effects
of sampling, finite filter length, and algorithm noise, all of which will be
small in a well-designed canceller. Obviously, the Wiener filter analysis also
applies only to the converged LMS canceller, and provides no information as
to its transient response.

Appendix C derives the transfer functions of the Wiener canceller illus-
trated in Figure 2-7 in terms of the second order statistics of the hydro-
phone outputs. These are characterized in the frequency domain by Su(w)
the power spectral density of the primary hydrophone output, Se(w) , the
cross-spectral density (CSD) matrix of the K reference hydrophone outputs,

defined as

S (w) = (se(p,q.w)) p =201, ...K-1 (2-15)

g =0,1,...K-1

h

with se(p,q, w) the CSD between the outputs of the pt and qth hydrophones

as given in Section 2.2, and by §1(u), the CSD vector between the primary

and the references. With the primary hydrophone is md feet from the near-
est reference, as shown in Figure 2-2,

Sll(w) = se(K +m-1, K+m-1, w) (2-16)
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and

$,(@) = (g0 Km-1), s (LK+m-1), ..., s_(K-1,K+m-1)]T
(2-17)

In this notation, the transfer functions of the K filters in Figure 2-12 are

given by
Ho(w) = [Hy(w).H (), ..., Hk_l(w)]T = s(;l(w) 5 (w)
(2-18)
and the power spectral density of the canceller output is
+ -1 4
Eg(m,w) = 5;,(w) - s (w) S (W) 5,(w) (2-19)

where the subscript K on EK(m, w) indicates that K references are used in
the canceller and m is the distance from the reference array to the canceller
in units of d feet. Since the models described in Section 2.2 provide
$o(P.q,w), (2-15), (2-16), and (2-17) can be used to evaluate the cancel-
ler output spectrum (2-19). This is the primary vehicle for the analyses re-
ported here.

2.4 Results From Linear Prediction Theory. Proceeding from the

general models developed in Appendices A and B, and from the canceller
model derived in Appendix C, Appendix D shows that the Least Mean Square
cancellation of a spatially uncorrelated, narrow extended source is equiva-
lent to the linear minimum mean square error prediction of a bandlimited
random process in noise. This equivalence allows direct application of known
results from linear prediction theory to the extended source cancellation
problem of interest in this report. The most useful of these results involve

the irreducible canceller output spectrum, defined as




Em(m,w) = lim EK(m,w) (2-20)
K-x»

Recall from Section 2.1 that the acoustic field model requires that the plane
wave assumption be valid across the entire receiving array, which will be
violated as K~w(since the length of the reference array becomes infinite) .
Therefore, E,(m,w) must be regarded as a lower bound to the canceller
output spectrum.
When m=1, so that the entire array is uniformly spaced with spacing, d,
the irreaucible canceller output spectrum is shown to be given by
T
E,(1,0) = exp |5 f log H_(,w) da (2-21)
-
where He(a ,w) is the wave number-frequency spectrum (WNFS) of the hy-

drophone outputs. For a narrow source of angular extent, 2¢, this is related

directly to the source spectral density, SI(Cb,w) , as follows

oo
_ .2 1 a+27k a+2nk )
He(a,w) = O’n(w) + Z 7 SI ( = +00,w) Rect [_21r_w—] , ael-m,7]
k= e (2-22)
where
Y= g-sin¢ and W = v¢
A 0
When w<1/2, (2-22) reduces to
_ 2 1 o a
He(a,w) = O'n(O)) + 7 SI (m"' ¢0,w) Rect {m] (2-23)

The condition that W= 1/2 therefore eliminates spatial aliases from the

WNFS, and, as such, can be regarded as a sampling cirterion.
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An important footnote to equation (2-21) is that when log [He(a,w)] is
not integrable, the right hand side must be replaced by zero. Appendix D
shows that if there is no ambient noise and the criterion v $ <1/2 is met,
then E(1l,w) = 0, so that at least asymptotically, the extended source can

be cancelled to zero. However, when ambient noise is present.
Eol 1,6) > 02 (@) (2-24)

so that the extended source can never be cancelled to the ambient noise
floor.

When there is no ambient noise present, not only can the irrducible can-
celler output power, E_(1,w), be shown to be zero, but the canceller output
spectrum, EK(I,u), can be shown to approach zero asymptotically in K, the
number of references. That is, EK(l,w) is asymptotic to

L(K) = G(w)[sin(rve)]E*!

(2-25)
where G(w) depends upon the source extent,®, the sampling parameter, v,
and upon the WNFS of the hydrophone output, but not upon K (G(w) is
given by equation D-61 of Appendix D). The rate at which this asymptotic
approaches zero does not depend upon the shape of the source, as can be
seen from (2-25). It is pointed out in Section 2.5 that even for relatively
small K, L(K) is a good approximation to Ek(l,w) . Further, L(K) will be
useful in predicting the value of Ek(l,u) when ambijent noise present, as
developed in Appendix K.

The more general case of m > 1 is also considered in Appendix D. It is

shown that if the irreducible canceller output spectrum for m=1, that is -

Ex(1l,w), is zero, then




Ee(m.w) = 0 m>1 (2-26)

This means that if the output spectrum gives asymptotically to zero with K
for m=1, then it will do so for m > 1, too. Although there is no result
analogous to (2-25) for m > 1 indicating exponential behavior, numerical
results discussed in Section 2.5 suggest that Ek(m,u) also goes to zero ex-
ponentially but at a slower rate. As in the case of m=1, the irreducible out-
put spectrum is always non-zero when ambient noise is present, so this
result applies only to the noise free case. It is also shown that E«{m,w) is
a non-decreasing sequence in m, so that the irreducible output spectrum,
which places a floor on the cancellation performance, cannot decrease as the
references are moved farther from the primary (m increases). In fact, for
the cases of interest here, Eo(m,w) always increases with m.

Appendix D also develops an implicit expression for the cancellation
floor, Eq(m,w), in terms of the source spatial distribution, SI (¢.u). It is

shown that

m-1
Eul(m,o) = Y 'ck(w)l2 (2-27)
k=0
where
”
C (w) = exp zi”[ log [H (@,w)] da (2-28)
-7

and the remaining Ck's satisfy

had %k
z C () Z" =
n=0




with

T
-ina

b (w) = 5= | log [H, (@ w] e " da (2-30)

-T
Again, He(a,w) is the hydrophone output WNFS given by (2-22) or (2-23)

in terms of SI(¢,w) . The implicit relationship, (2-29), can be solved explicitly
for small m (see Appendix D, supplement II), but the expressions are quite
complicated and give little insight into the canceller performance.

2.5 Results for a Uniform Spatially Uncorrelated Interference. Suppose

that the model shown in Figure 2-3 is used to represent the surface rever-
beration from the CZ. A reasonable model for the reverberation is that the
intensity of the reverberation does not vary with bearing in the mainlobe
of the transmitted signal, so that, using (2-3)
ol@), 9clo, -6,. 0, + 0]
I ’ 0 1"70 1
SIa(G,w) = (2-31)
0, otherwise

where 6 1 is assumed small in the sense of (2-4). Incorporating two way

cylindrical spreading loss into the source characteristics suggests that
S (PW) = (2-32)
Ir™ 2p
so that the reverberation falls off linearly with range. Then from (2-6),

%[Rz _ RZ] (2-33)

Gr(w) = 0 I

and the hydrophone output CSD is




—j“—cE (p-q) cos8

0 2

2 2
[Ro 'RI ]ol (w)

) -

_ 2
Se(p,q,w) = Gn(w)dpq +e

owd .
) [sm = (p-q) 91 sin 90

(2-34)
1wd _ .
[i? (p-q) Slﬂ@o
which is just a straight forward extension of (2-11) using (2-5). Hence
the uniform source model developed in Appendix A can be used to investi-

gate the performance of the canceller with CZ surface reverberation if the

source spectrum,olz(w), in (2-10) is replaced by of(w) [Rg—RIz] /4.
Appendix F uses uniform source model and the results of Appendix D

to determine the cancellation floor, E(1,w), for the CZ surface reverbera-

tion modelled as in (2-34). A significant result is the existence of a spatial

sampling criterion relating the hydrophone spacing

- 4d . ;
Y= —Xsm¢0 (2-35)
and the source extent, 61. It is shown that if
ve, > 1 (2-36)
1=2 “
then only very slight cancellation is possible. One the other hand, if
ve 1 )
1<3 (2-37)
then the cancellation floor is given by
2w
_ 2 INR 1
Fo(l,w) = cn(w) [1 + TW-'] s 791 <‘2‘ - (2-38)
2w




_ 2 2 2 .2 5.
INR = [RO - RI] Glol(w)/vn ) (2-39)

is the interference to noise ratio at the array, and

o] —

W = vé (2-40)

Using (2-38), the cancellation floor relative to the input power,ai( ~J(1+INR).
is

f)“’

Ep(1l,0) ) 1 -
= [1+INR] ! [1 + %‘%J

- SW < E (2-41)
To(WI(14INR), — W < :

This is plotted in Figure 2-8 for values of W between 0 and 0.5, and for
INR's of 40, 30, and 20 dB. It can be seen that only when W is small is
cancellation to near the ambient noise floor possible.

A second useful result derived in Appendix F for the uniform source
case is an asymptote in K for EK(I. «) when the ambient noise is not present.
This is developed using the form of the Strong Szego Limit Theorem [12]
discussed in Appendix D. It is shown that for oﬁ( w) = 0 and W<1/2, Ek(l,.,)

is asymptotic in K to

2
200 (W) 9K +1

A(K) = ——— [sinTw] W<

DO =

that is asymptotically, EK(I, w) decreases asymptotically with K. Although
the noise free case is not of practical interest, it will be shown later that
A(K) is useful in describing the canceller behavior in the noise present case.
‘The results of Figure 2-8 indicate that the cancellation can be made
arbitrarily close to the noise floor by making d small, which moves the

references closer together. However, it should be noted that as d gets
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smaller, the references are also moving closer to the primary in this model,
accounting for some of the cancellation improvement. A meaningful examination
of the performance therefore requires evaluation of Ew(m, .), where the refer-
ence are md feet from the primary. This would allow determination of the cancel-
lation floor as the references are moved closer together but maintained a con-
stant distance from the primary. Although Appendix D developed an expres-
sion, (2-29), which allows explicit determination of Ex{m, w), the expres-

sions are very complex and yield no insight.

An alternative approach is to evaluate EK(m’“’) numerically, using the
results developed in Appendix E. Using the fact that the eigenvalues and
eigenvectors of the reference hydrophone output CSD matrix can be ex-
pressed in terms of the Discrete Prolate Spheroidal Sequences (DPSS's) and

their associated eigenvalues [13], it is shown that
E (m,w) = qz(w) + 29 0'2(w)
K n 17e

boxs
11

1
] 26 0, (K, W)

W 2 )

L £ | 2ve @) +26,05 @A (K, W)

)\k(K W)

2
(k) _
[VK+m—1 (K,W)] (2-43)
where k is the number of references, as before, and

{vr(nk) (K,W)} = k™ ppss
m=...-1,0,1,...
A (K, W) = eigenvalue associated with the k' DPSS.
The DPSS and their eigenvalues are easily evaluated on the comp uter,

which allows numerical evaluation of EK(m,w) from (2-42). Appendix K
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includes extensive plots of EK(m"") as a function of K for various m and values

of W from 10 4 to 5 x 1071, Interference-to-noise ratios of 40 dB, 30 dB, and
20 dB are given, as well as some results in the ambient noise free case.
In the ambient noise free case, plots show that the asymptote, A(K), given

in (2-42), is an excellent approximation to Ek(l,m) even for small K, that is

2 (2
20 g () ci(w) = 0
1 e rsinmw)X*l J n

—_— (2-43)
2w [W< %

E (1,w) =

Recall from Section 2.4 that an extended source cannot be cancelled to the
ambient noise floor, but approaches some cancellation floor, E_(1,w) >C’r21(w) .
However, it seems reasonable that the noise present case should behave
approximately like (2-43) if the interference to noise ratio is high and the
cancellation achieved, E(1,w) is well above the cancellation floor, E_(1,w).
This conjecture is shown to be valid by comparison with numerical results
later.

The numerical results from Appendix K for the ambient noise present
case are typified by Figures 2-9'through 2-11, which show the 40 dB INR

1, 10‘2, and 10_3 respectively, and by Figures 2-12, 2-13, and

for W = 10~
2-14 which show the same cases for INR = 20 dB. Also shown on these fig-
ures (and the others in Appendix K) are the cancellation floor, E_(1,w),
comp uted using (2-41) and the approximate value of EK(I,w) in the noise
free case from (2-43). Note that E_(1,w) is indistinguishable from the

noise floor for W = 10-2

. It can be seen that the canceller output spectrum,
EK( 1,w), approaches the floor quite rapidly at first, following the asymptote,
(2-42). However, there is a pronounced inflection point above which the can-

cellation floor is approached slowly. This point is very significant from the
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point of view of the cost of cancellation improvement per dB. Suppose the

inflection occurs at K = KO. Then there is a definite "law of diminishing
returns"” in using more than K0 references, since each additional reference
incurs the computational cost of another LMS adaptive filter, regardless of

the additional cancellation it provides. For example, in Figure 2-15, use of

2 references achieves about 33 dB of cancellation, while use of 6 additional
references only improves the cancellation 3-4 dB.

It is shown in Appendix K that this inflection point occurs at
approximately

K0 = [KI] (2-44)
where [x] is the smallest integer greater than or equal to x and

,wel (2-45)

K 2

INR
W ‘] 1

=% [log(sin = W)] "t [ (2W-1) log

I

The parameter KI is just the intersection of the asymptote, (2—42‘) and the
cancellation floor (2-41). Choosing K = K0 (for m=1) does not mean that
further cancellation is not possible, but that this additional cancellation is
costly.

The number, KI’ provides insight as to how the number of references
required in a given situation changes with W and with INR. From (2-45),
it can be seen that KI is linear in 10 log (INR), which is the interference-

to-noise ratio in dB. The slope of KI with respect to 10 log (INR) is

d K
I _ 1 2W-1 (2-16)
d (10 Tog (INR)) 20 log (sinT W)
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so that approximately (2W-1)/(20 log (sin7 W)) references are required per dB
of INR. Figure 2-15 shows KI plotted as a function of 10 log (INR) for vari-
ous W. The dependence on the interference-to-noise ratio is quite weak
when W <0.01, that is, when the interferences are very narrow.

The dependence of II on W is more complicated as shown in Figure 2-16,
which shows KI plotted as a function of W for INR = 20, 30, and 40 dB. For

small W (say, W <10—2) the dependence of K, on W is very weak, regardless

I
of INR. As W increases above 10-2. the value of KI begins to increase
rapidly with W, going asymptotically to infinity at W = 1/2. Recalling that

no cancellation is possibie when W = 1/2, it would be expected that KI +®

at this point.

Now, suppose the criterion K = K0 is used to select the number of
references used in a given situation. Figure 2-17 shows that the cancella-
tion achieved is within several dB of the cancellation floor, (2-41) for this
choice of K. In fact, it can be seen that the value ofEK (1,u) is very nearly

0
log (INR) dB above the floor, so that

2w

- 0.1 - 2 -9 INR

(2-47)

provided that (INR)O'1 E, (1,w) < 29103 (w) + 0121 (w). This condition just
assures that the approximation is not used when it would produce an arrar-
ent increase in the interference power relative to the uncancelled primary
output. If INR >>1 and W < 1, as it will be in all cases of interest, (2-47)

can be approximated as

Ey (L) 29102 (w) (INR)ZW--9 (o) -2W (2-48)

0
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For 0< W < 1, (2W) ~ 2V is within about 1.6 dB of unity, so

2 9

By (L) =25 2o angy 2 (2-49)
0 e
The cancellation achieved is then approximately
K 2W+0.1
Ce (Low) = ——0 UL & ang)?"-9
0 on(m) + Olae(m)

for INR >> 1, Expressed in dB, there yields

10 log CK (1,u) ==-0.9 [10 log(INR)] + 2W [10 log INR] (2-51)

0
The interference rejection in dB varies approximately linearly with both
the interference to noise ration in dB and the paramter W. This result is
valid over the range 104 < W= 0.45 and 10%=< INR = 104,

Examination of the numerical results of Appendix K shows for any given
selection of K and W, the curves of Ek(m"") for m > 1 have roughly the same
shape as that of Ek(l, ®) and, in particular, have the same inflection point
in K. Therefore, the value of K0 given above is suitable as a guide to the
selection of the number of references, K, even when m > 1. For some values
of W, however, Ek (m,w), m > 1, falls off somewhat faster with K > K0 than
EK (1,w) does. For example, in Figure 2-10, with m=1 and K0=2 yielding
about 33 dB of cancellation. Six additional references (K=8) gives only
3-4 dB more cancellation, so choosing K = KO seems justified. However,
for the same case with m=5, K = K0 = 2 provides 22 dB of cancellation, while
using only 2 more references gives 6 dB more cancellation. Thus, K0 appears
to be a rougher guideline when it is used for m > 1. Of course, there will

always be some ambiguity as to how much rejection must be provided by a
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reference to justify its use. Certainly in any given design situation, K0

can be used as a "rule of thumb,” with final choice of K made by referral
to the curves given in Appendix K.

The numerical procedure for calculating EK (m,.) as given in Appendix
K allow assessment of the effects of changing the hydrophone spacing, d,
while holding the distance from the priméry to the closest reference (md)
constant. If d is divided by A (reducing hydrophone spacing), then m is
multiplied by A to make md constant. The results of this are shown in Fig-
ures 2-18, 2-19, 2-20, and 2-21. These curves show EK(m,w) as a funection
of K for various values of A, where

m = A

and

(d,/4)

W= WO/A = N 91 SinGO (2-52)

Hence, the curves can be interpreted as varying spacing d, while holding
md constant. Figures 2-18, 2-19, 2-20, and 2-21 use Wo =.1, .05, .005, and
.001 respectively, and vary m over the range indicated on the figures. The
plots are all for an INR of 40 dB. Recall that as m was increased for fixed W
and K (that is, as the reference array is moved farther from the primary with
fixed spacing between reference hydrophones) the canceller output spectrum
increased monotonically. The situation is quite different when the reference
spacing is changed holding the distance to the primary constant. The be-
havior is not monotonic, and the Ep (m,w) may increase or decrease depend-
int upon Wo and K. The details of this behavior cannot be predicted from

the analytical results at present, and will be investigated further in the next

phase of the study.
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Figure 2-18. Canceller Output Spectrum vs. K for Wo = 0.1, INR = 40 dB




Figure 2-19
Canceller Qutput Spectrum vs K
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Figure 2-20. Canceller Output Spectrum vs. K for Wo = 0.005, INR = 40 dB
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2.6 Cancellation for an Extended Interference Producing an Exponential

Hydrophone Output CSD. It is quite common in the study of bandlimited

temporal random processes to model the process as having an exponential
correlation function.

2 ,-Bl7l (2-53)

p(r) =0
where 0'2 is the power of the process and where B is the bandwidth. This
correlation function has the advantage of being representative of many
physical processes while having nice analytical properties. In particular,
given a sequence of N samples, uniformly spaced m time, of such a process,
the correlation matrix of the N samples is invertible explicitly (this is dis-
cussed thoroughly in Appendix G). It therefore seemed reasonable to con-
sider a source producing an exponential hydrophone output CSD and the
performance of the canceller with such an interference.

Appendix G assumes the same hydrophone geometry as Figure 2-2, but

assumes that the extended interference produces the hydrophone output CSD

S.(P.0. @) = TA(W B, +Tf(w) e B(@)(p-ald (2-54)

h references, where B(w) is a spatial

between the outputs of the pth and qt
bandwidth. Using the results of Appendix D and the special properties of
the CSD matrix produced by (2-54), the irreducible canceller outp'ut power,

E(m, w), can be determined in closed form for arbitrary m. It is shown that

2m

Ewm, @) =of(w) [B(I-sz) Y (1- p2m

2,om*
- 28°F (2-55)

B( 1+p2)+( 1-p2)+J[B(l+P2)+(‘1«P2)] 2'(230)2




where 1
p = ¢ B(@)d (2-56)
and
0121(@)
B8 = 3 (2-57)
crl(w)

In the interference only (ambient noise free) case, B8 = 0 and (2-55) re-
duces to

TAmB(@)d) 52wy = 0

(2-58)

E . (m,w) = o'Iz(w)(l- p2m) = o'Iz(w)(l. -e
From Appendix G, however, (2-58) is just the cancellation that would be -
achieved using a single reference placed md feet from the primary. There;
fore, use of more than one reference (K > 1) does not improve canceller
performance. This is a fundamental difference between the uniform inter-
ference discussed in Section 2.5 and the one producing the exponential CSD
of (2-54). Recall that for the uniformly distributed source

lim EK(m,w) = 0
K+

The difference in the behavior of Ex(m,w) for the two hydrophone output
CSD's can be explained in terms of the special nature of the exponential
CSD. It can be shown that the sequence of hydrophone outputs, taken
at a single frequency (in the interference only case), are a first order
Markov sequence. As a result, the optimal canceller uses only the closest
reference, regardless of how many are possible.

Figures 2-22 and 2-23 plot the irreducible canceller outbut power

relative to the input power given by (2-55) as a function of p for values of




10 log (1/8) of 40 and 20 dB, respectively. It can be seen that cancellation

i to near the noise ﬂoor,a'rzl(w ), requires that the primary and references be
very highly correlated. This is again due to the Markov nature of the hydro-
phone outputs under the exponential CSD. At high interference to noise

ratio, the optimal canceller uses only the reference closest to the primary and

the output power is proportional to (1 - p2m) . Additional references have no
effect, so the canceller depends completely on the proximity of the closest
references to the primary to achieve cancellation. Hence, p must be very
close to unity to produce cancellation to near the noise floor.

The canceller performance with the exponential hydrophone output CSD
can be compared with that achieved in the presence of a uniform interference
(producing a sin x/x shaped CSD) by noting that the parameter B(w)d in

the exponential case plays the same role as

_d., .
w = X<I>sm¢o

in the uniform case. Appendix G makes the following observations:

(a) If W 21/2 in the sin x/x case, virtually no cancellation is
achievable, as already observed in Section 2.5. No such sampl-
ing criterion is present in the exponential case, but cancella-
tion is still severely limited for B(w)d = 1/2. Either CSD requires
a value of W much smaller than 1/2 if the canceller is to produce
cancellation in the 10 to 40 dB range.

(b) The optimal canceller produces better results for the exponential
CSD for W larger than approximately 0.4. However, in the im-

portant region of small W, producing more than 10 dB of

60

|
|
[




-t

.90

.Bo

.79
I

PUVER
.RQ €

I

FIGURE 2-22:Minimum Canceller Output
Power vs p for various m

interference-to-noise ratio = 40 dB

lhfal tvt -LqHPUI

a1

"t

.20 .30

.10




\\v
& o~
Ao
=T P Tb
~ awn © °
o 3
30 O
&= &
-
-
.nl. > o F X
— A o— o
oo w
52 %
o QU
o v -
w >
E > - .
3 [o]
€ - [~
-0
c 32 Q
¥ae 1 0
. W r—J
™
c
v
w 2
R " b
= ) ="
(33 “
ont c
e -
-
[ ]
»
9@-. "] 2 '] - Qﬂﬁ. OM-. Bﬂﬂ. ' 1 I °
wano4 1nafhb an1Bhau i

o e e

62




cancellation, the canceller is better able to reject the sin x/x 3
source. This is due to the Markov property of the exponential

source, as discussed above.

Summarizing, the exponential CSD produces significantly different re-
sults than the sin x/x case, as noted above. The differences between the two

reflect a Markov property inherent in the double exponential CSD. It is

likely that the differences also result from the fact that the sin x/x CSD is
produced by an angle limited source, while the exponential case results from
a source distributed on (-7,7). Like the sin x/x CSD, the source producing
the exponential CSD cannot be cancelled to an ambient noise floor for m=1.
Further, the minimum canceller output power is shown to increase with m,
just as the numerical results indicated for the sin x/x. However, the param-
etric behavior of the canceller with the two CDS's differs sufficiently that
the exponential case cannot be used to predict the canceller performance with
the sin x/x CSD.

2.7 Effects of Reverberation Non-stationarity on Canceller Behavior.

Section 2.1 considered two methods of applying the LMS adaptive canceller
to the non-stationary reverberation environment. Both methods held the
weights fixed for an interval of time after transmission in order to assure

that the canceller was not operating during periods of reverberation from

other sources. This is critical because the highly correlated inputs to the
canceller during these periods would severely degrade cancellation of the

CZ reverberation if the weights were not frozen. Once the initial time

interval has passed (and all other sources of reverberation died out), the

question arises as to the effects of ambient noise on canceller performance.




The first method discussed in Section 2.1 seeks to avoid canceller adaptation
in ambient noise completely. It does this by using an energy detector in the
reverberation band to determine when the CZ reverberation is present, and
only allowing the weights to adapt during this time. Given the fact that the
reverberation dominates the ambient noise (and signal, if present), this
detection should be very reliable.

However, it is well known that the LMS algorithm adapts much more
rapidly in an environment producing correlation between its inputs (such as
reverberation) than to one producing uncorrelated inputs (like ambient noise
does). That is, the filter "learns"” the correlation properties of an input
much more quickly than it "forgets" those properties once the correlation
disappears. The second approach discussed in Section 2.1 takes advantage
of this by operating the adaptive canceller continuously after the initial
time interval has passed. Thus, the weights adapt during the period of
ambient noise alone, as well as when the CZ reverberation is present. Since
the filter "forgets" slowly, the degradation due to adaptation in the presence
of the ambient noise will be tolerable if the period of ambient noise is not too
long. This approach eliminates the need for (and cost of) the reverberation
detector.

The latter approach is considered in Appendix J. A pulsed model for
the adaptive canceller input is developed then used to derive an expression
for the mean weights and man square error (canceller output power) in such
an acoustic field in the absence of signal. It is shown that if the reference
hydrophone cross-spectral density matrix due to interference has a dominant

eigen value, X X (as it will for a plane wave or narrow interference and

ma

64




high INR). then the transient response of the system is determined by

X Dc)' where Pn is the ambient noise power and where DC is

N + \
(Pn ma

the duty cycle of the reverberation, i.e.,

_ time CZ reverberation is present in one transmit cycie

Dc time canceller is adapting during one transmit cycle

Hence, the transient response is determined by the noise power plus the
time average of the eigenvalue over the adaptation time.

It is also shown that the pulsed character of the input produces an
increase in the steady state canceller output power above that which would
occur if adaptation only occurred in the presence of CZ reverberation. Note
that the canceller reaches a steady state, time varying solution in response
to the non-stationary input. For a single plane wave interference. this

maximum increase is shown to be

Kop 2
[1- (1-uP) Pj
(2-59)

_ _
max (1 - -upp® (1-up NP

where P[ is the interference power, is is the total number of samples in the
period during which filter adapts in one transmit cycle, and p is the number
of samples within k that the reverberation is present. This has been shown
numerically to be a monotone increasing function of u, so the increase in
canceller output power can be made arbitrarily small by decreasing u.
However, it will generally be required that the canceller converge within
several pings, so that u will be selected to give the desired dynamic
response. In that case, (2-~59) will provide an indication of the increase

in cancellation above that predicted in Section 2.5 and 2.6. Note that




¥ max is minimized by choosing p as close to k as possible, i.e., only adapting
in the presence of interference. It remains to develop an equivalent expres-
sion to (2-59) when the source is extended, and to use these results to

generate design guidelines for the implementation of the canceller structure.

2.8 Spatial Response of the LMS Canceller in the Presence of an

Extended Source. Although the main thrust of this study was the analysis

of the effectiveness of the canceller in rejecting an extended interference
without considering the effect of the canceller on some plane wave signal

of interest, it is clear that the detection of such a signal is the eventual
goal. Appendix H therefore considers the spatial response of the canceller,
that is, its response to a plane wave from some direction, d’s’ as a function
of that direction. This response is just the power that would appear at the
canceller output due to a plane wave signal at the angle ¢S. In the case of
a uniformly distributed, spatially uncorrelated, plane wave source, this
spatial response, Bw(¢s), is developed in terms of the DPSS's and their
eigenvalues and evaluated numerically on the computer. Figures 2-24
through 2-26 show the response of the canceller in the presence of such a
source centered at 45° relative to broadside and with an angular extend

of 20°. The interference to noise ratio is 40 dB, and the hydrophones are
uniformly spaced 1/2 wavelength apart. The Figures show the results
using 1, 4, and 8 references, respectively. The spatial response can be
seen to include a notch in the direction of the interference, as one would
expect. From the Figures 2-24 through 2-26 and those given in Appendix H,
it can be seen that the notch broadens and deepens as references are added

until there are 3-4 references, at which point additional references only
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sharpen the sides of the notch and improve the spatial response to signals

in directions other than that of the interference. The results of Section 2.5
indicate that for narrow sources, more use of more than 3-4 hydrophones

will not yield sufficient cancellation improvement to justify their cost. There-
fore, the results of Appendix H suggest that the reason for adding more
references may be to assure adequate signal response in some direction of
interest. N

It was shown in Section 2.5 that as the distance between the reference
array and the primary increase, the cancellation of the interference
decreased. Figures 2-27 and 2-28 show the spatial response of the canceller
for the same source and an 8 element reference array as above, but with m = 10
and m = 20 (recall that the reference hydrophone spacing is d and the distance
from the primary to the closest reference is md). It can be seen that the
notch depth has decreased, indicating a degradation in the cancellation,
and that there has been some degradation is the response pattern in direc-
tions other than that of the interference.

When interpretting these figures it should be kept in mind that the
primary consists of a single omnidirectional hydrophone, rather than an ﬁ
array, as would be used in most sonar situations. As indicated in
Appendix L, when a primary array is used, the responses like those of
Figures 2-24 through 2-28 would be multiplied by the response pattern of
the primary array. This would greatly attenuate (by the primary array
sidelobe level) those regions outside the mainlobe of the primary array.
Assuming, then, that the reverberation that limits the active detection

performance arrives on or near the main lobe, the signal response in the ‘
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vicinity of the notch is of primary interest. The reason for adding

references would then be to increase the slope of the sides of the notch.

With this in mind, it can be seen that in Figures 2-27 and 2-28,
increasing the distance between the references and primary did not signifi-
cantly degrade the spatial response in the vicinity of the notch. It can be
conjectured then that signal attenuation will not be a primary consideration
in selecting the distance between the primary and references when the
primary is a steered array and the interference is in the mainlobe.

As the interference-to-noise-ratio decreases, there is a reduction in
the depth of the null at the location of the interference. Figure 2-29 shows
the spatial response for the cases of Figure 2-26 (m=1, K=8, $=10°) but the
interference-to-noise ratio has been reduced to 30 dB. Figure 2-30 repeats
the same case, but with an interference-to-noise ratio of 20 dB. It is
interesting to note that the array response in directions other than the
interference direction is affected very little by the change in interference-
to-noise ratio.

A major task of the next phase of this study is the investigation of the
effect of the canceller upon a plane wave signal, and the quantification of
the effectiveness of the canceller in improving the detectability of such a
signal. During the next phase, the above conjectures will be examined and

quantified.

73




-5.00

-10.080

-\

1.

2

.

-39. 00 "P58 0825838 %0280 -13.00

-40.00
) A

-4S5.00

-39.

.o .00 w0.% d’i’lg«m gfgt? . S!ahggs 120.08 140.00 160.08 1a0.

1

FIGURE 2-29: Spatial Response for 20° Uniform Extended source at 45°
d/A = .5, m=20, K=8, INR = 4O dB

74




)

5.00

-18.08 -
—

L L

L 1

i

'SS.OGnﬁggTOEE§;g?§E 15&930 -13.00

-40.00

A

“43.00
n

-56.00

0.00 29.04 10.00 s‘@lg‘m g?s.@“ ﬁ!&h@gs 120.00 140.90 160.00 180

FIGURE 2-30: Spatial Response for Uniform Extended Source at 45°
d/Xx = .5, m=1, K=8, INR = 30 dB




3.0 CONCLUSIONS AND RECOMMENDATIONS

|




3. CONCLUSIONS AND RECOMMENDATIONS

This study has considered the LMS adaptive cancellation of CZ surface
reverberation using a bistatic approach, where passive hydrophones spatially
separated from the transmit/receive array are used as references. This was
done by modelling the surface reverberation as a narrow extended source that
is spatially uncorrelated and uniformly distributed. The work to date has
concentrated on the ability of the LMS structure to reject the reverberation
in the absence of a plane wave signal of interest. It was shown that by a
judicious choice of system parameters, such as hydrophone spacing and
number of references, the reverberation can be cancelled arbitarily close
to the ambient noise flow. Unlike the case of a point interference, however,
if care is not taken in the placement of references, little or no cancellation
may be possible regardless of the number of references. Through a combina-~
tion of analytical and numerical techniques, the parametric sensitivities of
the cancellation performance to source extent, hydrophone spacing, distance
between references and primary array, and number of references has been
characterized. These results comprise the basic tools for the design of a
canceller for use in a given situation.

An important result was that for narrow extended sources, such as CZ
reverberation, there is a law of diminishing returns with respect to the number
of references to be employed. That is, beyond some number of references,
say Ko’ more references do not provide sufficient additional cancellation to
justify the computational cost of including them. A design guideline for

selection of the number of references was derived. It appears that for the

cancellation of CZ surface reverberation in a sonar with a horizontal




beamwidth of less than 20°, at most 4-5 references are required. Of course,
these references only supply adequate cancellation if the other design guide-

lines are met.

Since this phase of the study considered the behavior of the canceller
in the absence of signal, the results presented here cannot be used to predict
the improvement in the detection of a plane wave signal in the presence of the
CZ reverberation. Some of the analysis of the response of the canceller to
the signal has been initiated in the work reported on the spatial response
of the canceller. In the next phase, this work will be continued, with the
goal of deriving a detection performance measure, such as deflection, for the
canceller structure. The effect of signal presence during adaptation (to
"signal bias" problem) will also be investigated.

The work in this phase of the study has been based upon several
theoretical models of the canceller structure and the CZ reberberation. During
the next phase, computer simulations will be run to validate both the analysis
and the mathametical models used. This will include development of a com-
puter model for the extended source for use with existing programs for the
multiple canceller structure. If suitable sea tapes can be obtained, actual
CZ reverbation will be compared statistically to the theoretical models used

here, and, if possible, run through the multiple cancelier algorithm.
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APPENDIX A: DERIVATION OF THE FAR FIELD MODEL




APPENDIX A: DERIVATION OF THE FAR FIELD MODEL

Consider the array geometry shown in Figure A-1 located in a noise

‘ field consisting of an ambient noise background and a strong extended inter-
ference source. The array consists of K+1 acoustic hydrophones arranged
as a horizontal line array. Of the K+1 hydrophones, K will be denoted
reference hydrophones, as shown, and used to cancel in the LMS sense, the
interference from the output of the primary hydrophone. The reference

hydrophones are uniformly spaced d feet apart, while the primary hydro-

phone is located md ft from the nearest reference. The reference hydrophone
outputs are denoted ek(t) for k = 0, 1,...K-1, while the primary hydrophone

output is ed(t) .

It will be assumed in the development of the noise field model that the
ambient noise produces zero mean, wide sense stationary noise at the output

of each hydrophone with nk(t) the ambient noise at the output of the kt—}l
reference (k = 0, 1, ... K-1) and nd(t) the output of the primary. It is

assumed that

E[nk(t)nl(t+r)] = Rn(T) 6k1 k=0,1, ...K-1 (A-1)

I=40 1, ...K-1

E[nd(t)nd(t+r)] Rd(r) (A-2)

and

(A-3)

)
(=]
P

[}
o
—
=

]
—

E[nd(t)nk(t+T)] =




REFERENCE
HYDROPHONES

PRIMARY

E HYDROPHONE
o——0 ——0— ff~ — -0

—— — — ——— —

Figure A-1. Array Geometry for Far Field Model

where 6k1 is the Kronecker delta and R n(T) is the covariance function of
the Nd(t) and Rd(r) is the covariance function of nd(t) . That is, the
ambient noise at the output of each hydrophone is uncorrelated with the
ambient noise at the output of any other hydrophone. This assumption will
be reasonable for realistic ambient noise fields if the hydrophone spacing is

not much less than one half wavelength at the lowest frequency of interest.

Let the extended source be distributed in angle, ¢, as shown in
Figure A-1, and assume that the arrival from each angle is a plane wave
across the length of the array. Let the arrival from the angle ¢ at reference
hydrophone number zero, denoted i(t, ¢), be a zero-mean, wide sense

stationary random process with




E[i(t, ¢ )i (t+T, $)]1 =R(0 4.0 ,.7) (A-4)

If the speed of sound in the water is given by c, then the propagation delay
from reference number zero to a point kd feet along the line array for the

arrival from angle ¢ is

%k (P =kgcos ¢ (A-5)

Integrating over all ¢ to account for the entire extended source gives the

hydrophone outputs as

™
ek(t) = nk(t) + f i(t- kg cos ¢, 4)d ¢, k=0,1, ... K-1 (A-6)
-T
and
m d
ed(t) = nd(t) + /. i(t-4J o cos o, ) d ¢ (A-T)
where
J=K+m-1.

Assuming that the interference, i (t, ¢), is uncorrelated with the

ambient noise, that is,

Efi(t, ®)n, (t + D] =0 VT, ¢
k=0,1, ...K-1 (A-8)
and
E[i(t, ¢)nd (t+ D] =0 VT, ¢ (A-9)

|
11




then the cross-covariance between the output of the ptﬂ and qt—tl reference

hydrophones is given by

Re(P. a, D = E[ep(t) eq(t + D]

.
= Rp(0) §__+ d -
pq ff Ry [0y, ¢9,7+ 3 (Dcos ¢, - qecosé, ] d¢,do,

-
(A-10)

Therefore, the cross-spectral density (CSD) between the outputs of the pt—rl

and qt-tl hydrophones is

se(p, q, w) =J[re(p, q. D]

_ 2 " +j-‘t'9—[pcos¢> -qeosd,]
=9, (w)qu +L[n SI (¢1, ¢2, w)e’'c 1 2 d¢1d¢2 (A-11)

where
Fx(D] =[ x(e I gt
- (A-12)
2 -
0w =F[Rp( D]
and
Sl(w, ¢19 ¢2) =J[RI(T’ ¢1’ ¢2)] (A‘13)

is the spatial cross-covariance function of the source at frequency w.




Similarly, it can be seen that

rl(p. 7 = E[ed(t)ep(t - Nl p=0,1, ...K-1

m n
- _d . N
= [ ./"‘ RI[T Py (Jcosd;1 pcos\bz)]d\ialdq)2 (A-14)

sl(p, w) =.y‘[r1(p.r)]

T e
.wd

_ -j— [Jcos¢, - pcosd,] .

= ff SI(¢1, 4)2, w)e ‘¢ 1 2d¢1d¢2 (A-15)

=TT -
and

rn(r) = E[ed(t) eq (t~ 1]

T T
=Rd(T)+__/; /_; RI(¢1, ¢2, t)dd)ldqaz (A-16)

Su(w) =J[ru( )]
(A-17)

- 2 e -ji‘)g—J[cos¢ - cos¢ ,]
= od(w) +’_/T:-/ﬂ‘ SI(¢1, ¢2, w)e e 1 2 d¢1d¢>2
where
o%(w) =FIR (V] (A-18)

Now, let e(t) be a random vector of the reference hydrophone

outputs,

= T
e(t) = [e (1), e (1), ... e, (1))




The cross-spectral density (CSD) matrix of the reference hydrophone outputs

is

Se(w) = FEle(te’ (0] (A-20)

1)
(=]
p—
=

'
[y

= Se(pv q' LL‘) p

"
<
—
=

]
—

q

The CSD vector between the reference hydrophone outputs and the primary

hydrophone output is

] -z ]
5y(0) = F|Eleg(De(v]]
= [s,(0, W), 5y (L, - 8;K-1, )] T (A-21)

The power spectral density of the primary hydrophone output is then Sll(w) .

It will sometimes be convenient to explicitly represent the number of
references, K, in the notation for the reference hydrophone CSD matrix and
the CSD vector between references and primary. In these cases, S.(K, w)

will be the reference hydrophone CSD with K references,

Se(K. ) =S (W g roterences (A-22)
and s (K, w) will be the CSD vector with K references
51(Kr w) = 5,(w) Ik references (A-23)




A.1 Narrow Source Approximation

When the extended source is the surface reverberation from the
convergence zone, the extent of the source will be much less than 2t radians.
Suppose that the source is centered on an angle, b and is limited to the

-3 + &
sector [¢0 = +], so

Sila. &y d5) =0 P R T N
(A-24)
¢2d [‘bo- (I), ¢0+¢']
Then (A-11) can be written
1
Se(p, q, w) = orzl(w)épq
. +]wd [,)cos(¢ +¢ ) qcos(¢0+¢2)] as,d8 (A-25)
f [ S0+, &+ we 2
If it is assumed that the source is narrow enough that
sin &=®
and (A-26)
cos &=1
then
pcos (¢0+¢1)-qcos(¢0+¢2) = (p-q)cos¢0-(p¢1-q¢2)sind>0 (A-27)




Therefore

2
Se(Ps Q) =6 (IEPG

& .3
+j29 (p-g)cose 424 (ps. -gé,)sine
P 0 ¢ (Pe 7% 0

+e [5 L5 S0 * 010 2 + &yeme do,do

2

(A-28)

It can be seen that under this assumption, there is a two-dimensional Fourier
transform relationship between the hydrophone CSD and the source angular

distribution. Similarly

® o
-j“—)cg(%p)co%o f / "‘J'u—(:q'(J ¢, -pd,)sindg,
5,(psw) = € g J-0S1(®gt O O Ty, wle do,de,
(A-29)

and

2 éis’ =L3C6) 3,)sin0,
Sll(w) =04 (W) + . I(% + ‘1’1’ ®0+ @2, w) e . d¢1d¢2(A-30)

Using the notation given in (A-20) and (A-21), these expressions yield the

following

S, w) = crn2 @ 1+ G W S, () G (A-31)

where

wd .
[ I 4 +]'c—(p¢1"q¢2)81n¢0
Seo(w) =(_f¢,[§l(¢0+¢l’ ¢0+¢‘2.u)e d¢1dd>2 p=0,1, ... K-1

q=0, 1, ... K-1

(A-32)




and

- fgd— peos ¢
G = diag |e (A-33)
p
Also
+'j% Jeose,
9;(w) = Ge 3, (A-34)
th .

where the p— element of S, s

S(P) = _LJQSI‘%‘“"P%“%"W do,do (4-35)

A.2 Spatially Uncorrelated, Narrow Source

It will be shown in Appendix B that for reverberation from the
convergence zone, the extended source may be assumed to be spatially

uncorrelated, that is,
SI(M ¢1. ¢2) = SI(d>1,.u) 8 (tbl—cbz) (A-36)

where 5(¢) is the Dirac delta function. Under these assumptions, (A-28),
4

(A-29), and (A-30) reduce to

. wd .
. - %p-acossy [ +2 (p-qposine,
Se(Ps Q) w) = 0 (Wopg*e 2eS(dp*dw)e de (A-37)
-j‘"’ci (J-p)cos oofq’ +j“~’% (J-p)d:sindao
SI(P-w) =e -@SI(%%, w)e d¢ (A-38)
and

2 ¢
Sll(w) = C4(w) + _L sI(qso +b, wdo (A-39)




For the spatially uncorrelated source, there is a simple Fourier transform

relationship between the source distribution function, SI(w,¢) and the CSD of

the hvdrophones.

Of particular interest will be the case when the source is not only narrow and

spatiallv uncorrelated, but uniformly distributed on the sector ( °0-§’ 60 +8,)

SI(‘*’s o) =‘012(w), b€ [¢0‘§n ¢0+ §]
l (A-40)
0, elsewhere

Under these conditions, the integrals in (A-37), (A-38), and (A-39) can be

evaluated, giving

$o(Ps QW) = "nz(w)épq

. wd . awd
+ crZ(W) sm[(p-Q) P @squ-l e_| c(p—q)cosd;o

1 wd (A-41)
7[(p-q)~c- smdso]
sin [(J —p)“—ﬂ—@sinaQ] -j w—-: (J-p)cos
so(py w) = U.‘[ (w) u)d . g (A-42)
%[(J-p) d 31n¢0]
and
S, (w=o zM + 2@02@) (A-43)
11 7 "n I
Therefore, in the notation of (A-33) and (A-35),
wd
2 - 8in (p-q) ¢ @ sing
S_(W=fo,” (V- _
eo I d (A-44)
3 [(p U s"‘“’o] =0, 1, ... K-1
q= 0, 1, ese K-l

A-10

- 4



and

. wd
sin [(J -p) _c Qo stn%]
3 [(J -p)“'—cci- sin %]

So(p, w) = 7 (w) (A-43)

A-11




APPENDIX B: APPLICATION OF THE FAR FIELD MODEL TO THE
SURFACE REVERBERATION FROM THE CONVERGENCE ZONE




APPENDIX B; APPLICATION OF THE FAR FIELD MODEL TO THE

SURFACE REVERBERATION FROM THE CONVERGENCE ZONE

B.1 Surface model with straight line propagation. Consider the geometry

shown in Figure B-1, in which the noise enamates from a sector of an annulus
on the ocean surface. The annulus is centered at the origin of the cylindrical
coordinate system, and has inside and outside radii Rl and Ro’ respectively.
The sector is assumed to be of angular width 261 centered about an angle 60.
A hydrophone is located D feet below the origin and a second hydrophone d
feet away along the negative y axis, as shown. This can be viewed as a
model of the convergence zone surface reverberation, except that the propa-
gation paths are direct rather than along the usual refracted paths associated
with the convergence zone. In the following results, it will be shown that the
propagation paths from the source to the array do not affect the hydrophone
CSD under the plane wave and narrow source assumptions if the source is
spatially uncorrelated. The assumption is that the reverberating surface is
uncorrelated from point to point is commonly made (see, for example, Van
Trees [10]) . The hydrophone below the origin represents the transmit/receive
array of the active sonar, and the other hydrophone is the reference. The

reverberation is limited to the angular sector, 80 - 61 to eo + 81, by the

horizontal directivity of the transmitter.




reverberating
surface

péimary
reference hydrophone
hydrophone

Figure B-1. Geometry for Surface Model with Straight Line Propagation




If the ambient noise is uncorrelated between the two hydrophones

spaced d feet apart, the CSD of their outputs can be written as

sp(du) = o Bw) £ (@)
eo)(el Ro 50 +81 o
+ S[ (ol.:;»z,:‘l,cz,w) (B-1)
% 9 "Ry 76 "% "Ry

. W
+]_[r (D 98)-r(p ve)]
.e‘¢cto"1’"1 172’72
' 0,0,dp,d6,dp,d8
1727727727171

where
o “(w) = power spectral density of ambient noise

Sl(pl,pz.el.t‘z, ) = CSD of noise radiated at (pl,el) and (92,82)

ro(o‘E) range from point at (p,6) to hydrophone zero

rl(o.e) = range from point at (p,8) to hydrophone one

speed of sound

(¢]
I

This result is just a straightforward extension of the model developed in

Appendix A.




It is assumed that the source is spatially uncorrelated, i.e.,

- = 3 - 3 - @ -
SI (Ql’“Z’GI’GZ’M) SI (01,61,u) Q (pl Jz) S (61 .2) (B-2)
Then (B-1) reduces to

so(d,0) = 9, 2(0) & (@)

60+81 Ro
+ +jg[ro(0,e)_r1(ove)] 2
SI(o,e,w)e c p deds
60—8 R

1 1 (B-3)
Now, as in Appendix A, assume that the wavefront from each point on the

annulus arrives at the hydrophones as a plane, and that the propagation

distance can be approximated as the sum of the range from the point to hydro-
phone zero and the plane wave propagation delay. That is,

r,(p,s) ar (p,s) +dcosa (B-4)
where o is the angle the arrival direction makes with the axis of the two

It can easily be shown that

hydrophones.
cos o = p cos 6 = 1 cos § (B-5)
,/02 + D2 DZ
1+ =
2
p

It is now assumed that o>>D, which is certainly true for the convergence

zone problem, so

(B-6)

coS oo ™ COS 6




and
9 % *91 R, +j gid cos &
Se(d,w) = % (w)8(d) + / SI (p,0,w)e pzdpde
g -9 R
o1 1 (B-T)
or, making the change of variables 68° = 8—60,
5 % R, +j—“‘;—d cos (87+8)
Se(d,w) =0 = 3§ (d) +/ SI(o,e‘+eo,w)e p"dpde”
-9 R (B-8)

1 1

Note that ro(p,e), representing the long range propagation from the
reverberating surface to the array, is not present in (B-8). Therefore,

the use of straight line propagation paths instead of refracted convergence
zone paths should have minimum effect upon the results, except as they pro-
duce different vertical arrival angles.

It is now assumed that 61 is small enough that cos 61 =~ 1, sin ela 91,

SO
cos (9”7 + 60) = cos 97 cos eo - sin 67 sin eoa cos eo - 87 sin eo (B-9)
and
s_(d,w)~o 2(w) § (d)
e o Un w
(B-10)
wd 6 R . wd

j——cos 8 1 o -j=—0sin 6
e ° ° / S1(0,6,w) ‘ %




This has exactly the same form as equation (A-25) of Appendix A, which

gave the CSD for a uniformly distributed, uncorrelated source in the far

field model.

Next, it is assumed that the source CSD function, SI (0.,9,w), is separable

in p and 6, that is

S; (py8,w) =8, (p,w) Sy, (8,w) (B-11)
so that
s (d,w) = 0 %w) 6(d)
e n
. wd R 0 ’
) —c—cos eo 0 ) 1 -jﬂ 8 sin eo
+e S;p(p,w)o“dp Sialprwle ¢ ds
R -9
(B-12)

Now, if the source CSD is assumed to be uniform in angle,
S (8,w) = 02 (w) (B-13)
Ia*™ I
then

se(d,m) = On2 (w) § (d)

(B-14)
2 sin [Znel%sin 6 1 j——“’d cos 9
o ¢ o
+ o (w) Gr(w) d
T+~ sin B
A o




Ro )
Gr(u)) = SIr (p,w) p dp (B-15)
Ry

If the pair of hydrophones on the x-axis is replaced by a line array of

uniform spacing, d, then the CSD between the outputs of the pth and qth

hydrophones is

2 () 8 (B-16)

Se(p,q,w) = % Pq

sin [278,(p-q) S sin 6 ] i @9 (p-q)cos @
2 1 A o c o
+ o () Gr(w) e

TTX sin eo

where 6pq is the Kronecker delta. Note that the plane wave assumption must
be valid over the entire length of the array.

This has exactly the same form as (A-41), so that the far field model can
be applied to this surface source under the above assumptions.

B.2 Vertical arrival model. Consider the spherical coordinate system

shown in Figure B-2, As before the noise field is assumed to consist of
spatially uncorrelated hydrophone noise plus an extended source. Here, the
extended source is assumed to be distributed over a horizontal sector, eo-e

1
<8<f, + 6 and a vertical angle, ¢, "0 <¢<d>o+d> , and

SI (61,62,¢1,¢2,w) = CSD between arrivals from angles (61,¢1) and (62.¢2)

ri(e,d)) = propagation distance from source arriving at (9,9) to

hydrophone i (i =0,1)




e

angle of arrival

‘Q«-e.—»g——'e-"’\

solid angle subtended /

by reverberation arrivals

Figure B-2. Geometry for Vertical Arrival Model




It is assumed that the source is spatially uncorrelated,
SI(81,82,¢1.¢2,w) = 51(81"’1""‘) : (91—92) s (¢>1-¢2) (B-17)
so that the CSD of the two hydrophone outputs is

so(dw) = o 25 (a)

n
(B-18)
%0 %" P Yr (8,0 - 8,01,
+ / Sl(e,(b,w) e sin “¢d¢ds
90-81 ¢>0-¢

As in case B.1 above, it is assumed that the wavefront from each point

on the source is planar, and that

r1(8,<b) = r0(6,¢>) +d cos a (B-19)

In this case, however,
CcOS & = Ccos 9 cos ¢ (B-20)

S0

se(dw) = g %w) & (@)

60+61 ‘boﬂp j % cos € cos ¢ 2
) ®

o~ %1 o

-¢




Note tixat the kernel, exp [-j 'i)(—:l cos & cos ¢} depends upon both variables
of integration and is not separable. Because of this, reduction of (B-21)
to a line source requires that either cos 3 1 or cos ¢ = 1. This means
that max [30—8,80+8] or max [@o-@,@ow] , respectively. be small, which is
a much stronger condition than in case B.1, which only required that ¢ be
small.

It will be assumed that the vertical arrival angles, ¢¢ [¢o-¢ ,¢>O+:>] , are

close enough to the horizontal that cos ¢ ~ 1 and sin ¢ a ¢, which means that

the arrivals must be within approximately *10° of the horizontal. This is
consistent with the arrival angles associated with the convergence zone in

surface ship hull mounted sonars. Under this assumption

So (d.w)ao (w) § (d) (B-22)
¢ j wd cos 6
/ f S, (8,6, w)e ¢ s2deds
% 9,0
= o 2wy s (a)
(B-23)

61 ¢0+® j %qcos (9+60) 2
+/ sI(e+eo,¢+¢o,w) e »“dedo
-61 0,0

Proceeding as in Case B.1, assume that 9. is small, so

1

cos (e+eo)~cos 60 - 8 sin eo (B-24)




and assume that S

1 (%.¢,.) is separable,
SI(:‘,@W) = SIh (23, .) SIv (:..)
SO

L2 :
Se(d.u‘)%un () 2 (d)

+s
¢o

2
+/ S (0.2)0%de
s -

(o]

-

D

L 1

When the source CDS is assumed uniform in &, this gives

sp(d.w) ~a %) & (@)

. d .
2' sin {278, —sin 5] .owd
+o, (w) G(D(w) 5 12 0 o Jg-cos eo
™ A sin eo
where
¢o+d> .
Gq)(m) =/ Sl(¢)(ﬂ) ¢ d¢
¢y~ %

8
i xd cos 3 1 -j =d 2sin 9
(o] o A C o)
e S.,(%,.)e de
- Ih o

(B-25)

(B-26)

(B-27)

(B-28)

B-11




This has exactly the same form as (A-41) and as the CSD of the far field

model with a uniform, uncorrelated source. As before, for a uniformly <
spaced line array along the y axis with element spacing d. the CSD between

the outputs of the pth and qth hydrophones is

20
Se(p,q.~)aun () ‘pq

(B-29)

. d .
- 8, —sin & !
sin [ 2n(p q)~1 y S bo] i fc_q (p-q) cos &

2
+Jl(w)G¢>(w) e o

d . .
(Pra) ¥ sin & N

B.3 Summary. Two source models that can be used as approximate !
representations of surface reverberation from the convergence zone have
been developed. Under very reasonable assumptions, it has been shown that
these models produce a hydrophone output CSD of the same form as an ‘
uncorrelated source, which was considered in The assumptions
needed for use of the model are
(a) The wavefront emanating from each point on the reverberating

4
surface can be regarded as planar across the array. l
(b) The reverberation is confined to an azimuth angular sector of |

small enough that sin 6, = ¢, and cos 6, ~ 1.

1 1 1 1
The transmitting sonar must therefore provide sufficient

width 281, with 8

directivity to justify this assumption if the model is to be
valid.
(c) The reverberation at each point on the surface is uncorrelated

with that at any other.




(d) The spectral density of the reverberation over the two

dimensions is separable.
(e) The spectral density of the reverberation is uniform in azimuth,
In addition, the vertical arrival angle model requires that
(f) The vertical arrival angles be concentrated in a narrow sector
about the horizontal, say -¢ <¢$ < ¢, such that sin $ a ¢,
cos ¢=1.

Under these assumptions, the results for an uncorrelated line source
can be directly applied to the study of the cancellation of convergence zone
surface reverberation. These results also suggest that the iine source
model can be used to approximate other two dimensional sources of narrow

angular extent.

B-13




APPENDIX C: DERIVATION OF THE OPTIMAL CANCELLER
AND CANCELLER OUTPUT SPECTRUM




APPENDIX C; DERIVATION OF THE OPTIMAL CANCELLER
AND CANCELLER OUTPUT SPECTRUM

Consider the multiple reference canceller configuration shown in Figure
C-1, in which the output of K reference hydrophones, denoted e (t) with
i=0,1... K-1 are to be used to cancel an interference from the output of a
primary hydrophone, ed(t). In keeping with the discussion of Appendix A,
the hydrophones outputs are assumed to be zero mean random processes, that
are at least wide sense stationary. That is,

0.1,...K-1
0,1,...K-1

E[ep(t) eq(t+r)] =r(p,q,T)

where E[ -] denotes expectation. The filters are linear and time invariant
with imp ulse responses hi(t) for i=0,...K-1. The impulse responses are to be
chosen to minimize the mean square value of the error output, E[sz(t)] . The
derivation here closely follows that of reference [14]

From Figure C-1, it can be seen that

K-1
e(t) = ed(t) - Z ![ hk('r) ek(t—r) dr {C-1)
k=0
+
eq(t) — > €
eo(t)—-—' ho(t) '
+
el(t)—-i h, (t)
t a8,

Figure C-1. Multiple Referénce Canceller




so that

o

K-1
E[Ez(t)] = rll(O) -2 Z f hk(‘r) rl(k, 1) drt
k=0

(C-2)
K-1 K-1 . .
+ Z [w '[m hk1 (1) hkz(o) re(kl,kz,r_p) dds
K1=0 k2:0

with re(p,q,r) the cross-correlation between ep(t) and eq(t) , rl(p,r) the
cross-correlation between ep(t) and ed(t), and rn(T) the covariance of
ed(t).

Let the optimal impulse responses be denoted hf((t) fori=20,1,...K-1,

and let
_ ,0
hk(t) = hk(t) + Yk th(t) (C-3)

where 6hk(t) is an arbitrary variation about hi(t) and Yy @ real constant.

Substituting (C-3) in (C-2) gives the mean square error as

K-1 K-1
El“(t)] = Jo + 2 Yy /j/:Shk(T) hﬁ (o) rl(k,r—p) dtdp
- 1 - 2
kl—O k2—0

K-1 K-1
_/thl(T) re(kl,kz,r) dt| - Z Z Ykl Ykz
k1=0 k2=0
ﬁéhkl(r) 6hk0(o) re(kl.kz.r-o) dtdp (C-9)

Cc-2




where

K-1
- _ 2 : o
J0 = rll(O) 2 /hkl(r) rl(kl,r) dr
k1=0

K-1 K

D>

k1=0 k2=0

1
(o] [o]
/:[ hklm hkz(p) r (k) k. 1-0) dtdp (C-5)

is just the minimum mean square error. All integrals have upper and lower
limits of » and -«, respectively.

If a minimum exists, it will occur when
- o - _ -
hk(t) = hk(t),k—o, 1, ... K-1 (C-6)
A necessary condition for this minimum to occur is that

3—3- E[e2(t)] =0,k=0,1, ... K-1 (C-7)
Yk




Using (3-4),
I K-1
8\0( E[ez(t)] =2 Z/:/éhn(r) h(i)(o) re(n,i,T—o) dtdp
n i:O
Yo = 0
Yk-1=0
—/Ghn(r) rl(n,r) dr (C-8)

For this to equal zero for arbitrary variation of Ghn(t) ,

K-1
r(n,o = Z/‘hf((p) ry(n.k,1-p) do (C-9)
k=0

This must be satisfied for n =0, 1, ... K-1. Recall from Section 2.1 that

Sll(w) =eﬁ-[r11(T)]
sl(p’w) =J[1‘1(p,‘f)]

Se(p,q,w) =.F[re(p,q,1)]

where .¥[ -] denotes the Fourier transform with respect to 1, given by (A-12).
Then taking the Fourier transform of (C-9) gives
K-1

s;(n,w) = Z Hp(w) S (n,k,0) n=0,1, ..., K-1 (C-10)
k=0




where H(l)((w) is the transfer function of the kth optimal filter. Now, as

in Appendix A, let

T
s, (w) = s,(0,w), s,(1,w), ... s (K—l,w):l
-1 [ 1 ! 1 (C-11)
and i
Se(w) = (se(p,q,w)) (C-12)
p=0,1,...K-1
q9=0,1,...K-1
Then (C-10) can be written as
- o _
§1(w) = Se(w) H (w) (C-13)
where go(w) is a vector of the optimal transfer functions,
o o 0 0 T
H (w) = [Ho(w), Hl(w), ey HK_I(w)} (C-14)
Therefore,
0 ) |
H(w) = 8. 7(w) 5;(w) (C-15)

Fourier transforming (C-3) to yield the spectrum of the irreducible

error, termed the irreducible canceller output spectrum here, gives




K-1
E (w) = S (w -2 Z Hy (W) 8 (k,w)
k=0

K-

+

K-1
o o¥
E Hkl(w) sz(w) se(kl,kz,w)
k1=0 k2=0

ox* o* o*
Sll(w) - 2H" (w) §1(w) +H (») Se(w) H™ (W (C-16)

Substituting the optimal response from (C-13) gives the canceller output

spectrum as
= s ) st 7
Eg(w) = §;,() = 57(w) S_1(w) 8, (w) (C-17T)

Here, the subscript K in EK(w) indicates that K references have been used in

the canceller.

It will be useful to express EK(w) as the ratio of determinants,

det[SH(w)]
EK(UU) = ae—t‘[—sw (C-18)
where SH(m) is a (K+1) x (K+1) matrix defined as
SH((D) = Se(UJ) _S_l(w)
(C-19)

+
8;(w) S11(wW

This is easily shown using the following matrix identity.




Theorem: Determinant of a Bordered Matrix

Let the (N+1) x (N+1) square matrix, B, be defined as

A X
B = X+ c (C-20)

where A is an arbitrary N x N matrix X is a N-dimensional column vector,

¥+ an N-dimensional row vector, and c a scalar. Then
det[B] = c(det[A]) -y (adj[A]) X (C-21)

where det [ - ] and adj [ - ] are the matrix determinant and adjoint,

respectively.
Proof: Let
X1
: + * *
X = : Xz[yl---yn]
*n

Using the Laplace expansion formula with the elements of the N+1 column

of B as coefficients gives

N+1 i+N+1
det(B] = Z Di N+1 (-1) B, N+1 (C-22)
i=1
with b the ith element of the (N+1)th column and § the minor of
i,N+1 i,N+1
bi,N+1' Note that

Cc-7




= 2
Pysl,N+t = © and PN+1,N+1 = (A) (C-23)

Further,

bi,N+1 = Xi’ 1<i<N (C-24)

Now, the minor of b, N+1 for 1 <i < N is the determinant of the matrix
obtained by deleting the i-th row and the (N+1)th column, denoted Ci' That

is,

r T
a1 " 81N
Ci T %11 0 %1, (C-25)
8i+1,1. . . ai+1,N
aN.1 8NN
* *
Lyl . . .yN |

where a, i is the i,jth element of A. To obtain Bi N+1' reapply the Laplace

*
expansion formula with the A 's as coefficients

Bi,N+1 1]

* .
det[C,] = E y; D PN (C-26)

j
with o4 s determinant of the matrix remaining when the N'Ch row and jth column
of Ci are deleted. Inspection of (C-25), however, shows that ay j is exactly

the minor of a, j in the matrix A.




Therefore,

det{B]

1

N N
. .
c(det[A]) E xi(-l)1+N+1 E ; (-1yItN+L % ;
i=1 i=1

N N

c(det[A]) Z Z vo-n o, x (C-27)
j ij i

i=1 j=1

H

The quantity (—1)”] oy ; is the cofactor of a j in the matrix A, denoted Ai i

’ ’ ’

,? Hence
X
% s
i det[B] = c(det[A]) -y A11 A12 e AlN
. . . X (C-28)
ANl ANZ C e ANN
or
#*
det[B] = c(det[A]) - y (Adjl[A]) X (C-29)
Using this theorem,
*
det[SH(m)] = Su(w) det[Se(w)} - gl(w) Adj[Se(w)] §1(w) (C-30)
where Adj[A] in the adjoint matrix of A. Clearly then,
det[SH(w)] + -1
det(s_(w] 811w - 8;(w) 5,7(w) 5y (w) =Egp (w) (C-31)
In the special notation of (A-22) and (A-23)




_ + -1 ‘ -
B () = 5,308, (Kuh)S T (Kow) 8y(K o) (C-32)
- det[Se(K,w)]
where
(C-33)

SH(KNN‘) = SH(w)
K references
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APPENDIX D; THE EQUIVALENCE OF EXTENDED SOURCE
CANCELLATION AND THE LINEAR PREDICTION OF A
BANDLIMITED TEMPORAL SEQUENCE

Consider K+1 hydrophones oriented as shown in Figure D-1, and let
the output of the pth hydrophone be xp (t), where the primary hydrophone

from which the interference is to be cancelled, takes the (J+1)th position. Let

the cross-correlation function between the pth and qth hydrophone outputs
be given by
R = E[n_(t) n_(t+1)] (D-1)
pq(w) { p q

and let the cross-spectral density between the pth and qth outputs be

se(p.q,w) =,y7[qu(t)] (D-2)

where.#[ -] denotes the Fourier transform with respect to the variable ~.

Now, denote

So(w) = (s (P.q,w)) p=0,1,...K-1

q=0,1,...K-1 (D-3)
5; (W) = [s,(0,w),s,(1,w) s,(K-1 u))]T (D-4)
_1 1 , ’ 1 ’ s e s ey 1 ’

It is assumed that the process is spatially as well as temporally stationary,

so that

se(p,p+A ,w) = se(q ,Q+A ,w) (D-5)




PRIMARY
HYDROPHONE

REFERENCE
HYDROPHONES

Figure D-1: Hydrophone Geometry for Spatial Cancellation




for any p and q. It is shown in Appendix C that the power spectral density

of the canceller output for K references is

Ep(w) =8, () - 5, () 87 (w5 () (D-6)

Next, consider the temporal problem of predicting a stationary random
sequence, m steps ahead. Let a continuous random process, x(t), with
correlation function Rx(r) be sampled at a uniform rate of 1/’1‘S samples per
second, so that the random sequence is }x(nTs) : n=..,-1,0,1,2,..." The
correlation between the pth and qth samples will be Rx[(p'q)Ts] . Given
the finite past {x(-KTS) ver s X(=T) }, the goal is to predict in the minimum
mean square error sense the value of the mth element of the sequence,

x(st). It can easily be shown that the prediction error is

E(m) =R (0) -y, TR 1y (D-T)
where
R, = (R [(p-)T D, p=-K-Kl,...,-1
q = -K,-K+1,...,-1 (D-8)
= (Rx[(p-q)TS]), p=20,1,...K-1
q=0,1,...K-1
and
£y = [R(m), R _(m+D), ... R _(m+K)]" (D-9)
D-3




Comparing (D-6) and (D-7), it can be seen that the temporal linear
prediction problem is equivalent to the spatial LMS cancellation at a single
frequency. The temporal statistics, Rxx’ Lix’ and Rx(o) correspond to

Sa(w), 8y(w), and Su(w) in the spatial case. It is convenient to note that

in the spatial case, using the notation of Appendix A,

81(p,w) = se(J—l,p,w) (D-10)
and

Su(w) = se(p,p,w), any p (D-11)
Therefore,

5,() = [5,(3-1.0,0), s_(-1,1,0), ..., S,(3-1,K-1,0)]" (D-12)

This makes the equivalence of Rx[(p—q)Ts] and Se(p,q,w) clear.

The analogy can be extended one step further if the source is assumed
to be a narrow plane wave source in the same plane as the array, distributed
in angle ¢, as shown in Figure D-2. Let the arrival from any angle, ¢>1, be
uncorrelated with arrivals for any angle, Py if ¢y # Y and let the source
be distributed in angle from d)o - % to ¢>0 + ¢ with angular density SI (w,d)

in that interval. The source is assumed to be narrow if

1’
(s

sin ¢

]
—

cos 9 (D-10)




Also assume that ambient noise with spectral density, onz(w) appears at the
hydrophone outputs, and is uncorrelated from hydrophone to hydrophone.

Then, from Appendix A,

2
se(p,q,w)a % (w) (Spq

(D-11)

~wd d .wd .
-j— (p-q)cos +—4 (p-q)¢sing¢
= (p-q %0 / S (er0g.00 © 04

-¢

¢

+ e

This discussion will be facilitated by demonstrating that the value of the
canceller output spectrum, Ek(w) , given by (D-6), is not affected by the
factor exp [—j%-(1 (p-q) cos cbo] in the second term of (D-11). From

equation (C-27)

det [SH(K,w)]
EK(w) = det [Se(K,w)] (D-12)
where
Se(K,w) §1(K,w)
SH(K’w) = (D-ls)

+
S; (Kyw) 84w
Given the hydrophone CSD of the form of (D-11), it is possible to write

-+
Sy (K,w) =G, (K) Shgo(Ksw) G, (K) (D-14)

+
Se (K,w) =G (K) Sgo(Ksw) G(K) ) (D-15)




where
+p “(’,—dcos by

G(K) = diag e

p=0, 1, ..., K-1

G(K) 0
Gl(K) =

. wd
0+ . ]KF cos ¢o

with 0 a K-dimensional vector of zeros and

seo (K,w) = (seo (p.q,w))

p=0,1, ...K
qQ=0,1, ...K
with
¢
s_ ( )=02()6 + 02( $)e
eo p.q,w n ‘¥ Pq p ‘@
-
also
Sgo (Ksw) 8, (K,w)
SHO(K,w)= .
8, (K,w) Sll(K)
where

8o (Kyw) = {8, (0,m,w), s, (1, m,w), ...

-j ¢(p-q) -‘?sin o6
d¢

T
’ seo (K-l! m9w)]

(D-16)

(D-17)

(D-18)

(D-19)

(D-20)




It can be seen that

K-1 +ip u;:—dcos %

det [G(K)] = || e = (det [G'(K)]) * (D-21)
=0

o]

and

- jKué—d cos ¢ +
det [GI(K)] =e © det [G(K)] = (det [G1 (K)]) * (D-22)

Then using the fact that
det [ABC] = det [A] det [B] det [C]
(D-12), (D-14), (D-15), (D-17), and (D-18) give

det [SHO (XK,w)]

eo
Therefore, (D-11) can be replaced without loss of generality by
( )a0 2((.0)(5
Se P:qQ,w) =& n pq
(D-24)

¢ i%‘i (P-q)¢ sin ¢,
+ SI(¢+¢0,w)e d¢
)

so that the CSD, Se(p,q »w), is the Fourier transform of the source density,

SI(¢+¢0,w)-




. . : 2.
In the temporal case, when uncorrelated noise with variance 9, Is

added to each time sample,

o]

9 jZﬁ(P‘Q)TS
Rx[(p-q)TS] =0, «Spq + Sxx(f)e df, f=?7? (D-25)

where Sxx(f) is the power spectral density of the process x(t). If the
process is bandlimited,

Sxx(f+f0) . fo—Bs fsf0+B

S__(H = (D-26)
XX 0 , otherwise
Then (E-14) becomes
2 B jZﬁ(p-Q)TS
R (P-a)Tgl =g " 8+ S (F+fg)e df (D-27)
-B

Comparing (D-24) and (D-27), it can be seen that the angular density of
the extended source is analogous to the spectral density in the temporal
case. Further the angular extent of the source, ¢, corresponds to the
bandwidth of the temporal process, B, and the temporal sample interval,

Ts, corresponds to the spatial sample interval
d . d .
Y = gng sin 0g = sin ¢

with A the wavelength of the frequency, f.




Now, the samples of the random process, x(t), comprise a random

sequence ; xn: n=...,-1,0,1,2,... with

Xn = x(nTS) (D-28)
Define

R =B [x x4 (D-29)

and note that
Ry = Ry [KT) (D-30)

The power spectral density of the sampled sequence, ‘x I , may be defined

|"n}
on [-w,m) as
d jka
Hx(cx) = E Rke (D-31)
=00
where the inverse transform relationship is
1 T _].koz
R.k ST Hx(a)e da (D~32)
-m

Note that (D-27) can be rewritten as

27BT
s

_ 2
Rx[(p—q)’l‘s] =0, ‘Spq +[

[0 ]
Sxx (én'rs * fo)
-27BT

i(p-q)a da -
e 2“Ts (D-33)




If it is assumed that BTs < 1/2, then direct comparison of (D-32) and (D-33)

shows that

n

1 N o ae[-m,m)
*7 Sex (77 * fo) Rect| oy | 1
s s ] BTss 3

Hx(cx) =g 2
(D-34)

On the other hand, if BTS > 1/2, the aliases of the sampled power spectral
density must be considered, and Hx(a) must be replaced by fo(a) in

(D-32) where

_ 2
fo(a) =0, + E Hx(cx+2nk)

k=-w
(D-135)
at+21k
© — +f
_ 2 z: xx (znTs 0) o+21K
= on + T Rect [—m—] , agl-m,m
K=o s s

Now, consider the spatial cancellation problem starting with equation
(D-~24). Define the elements of the hydrophone cross-spectral density

matrix as

S, = .F;E[en ltle, (t+r)]" (D-36)




Analogous to the power spectral density of the temporal process is the wave

number-frequency spectrum (WNFS) of the hydrophone outputs, given by
- ko
H (a.w) = S, e ae[-m,m) (D-37)
e k
k=-o

with the inverse relationship

_ 1 -jko da (D-38)
Sk = He(a,w) e

-7

However, (D-24) gives Sk as
® . d _.
2 -]@k-“—)c— sin ¢,
Sk =% (w) § (k) + SI (w, d>+¢o)e do¢ (D-39)
-¢
Making the substitution
_oowd .
=9 < sin ¢0
(D-40)
_wd .
da = = sin (Do d¢
and letting
L owd o d g
Y =3 ¢ Sin o, =xsing,

D-11




2myd
_ 2 a -jka  dua _
Sk =0, (w) (k) + / SI (“”_Zm+ @o) e Ty (D-41) ‘
-2my $ 1
Assume for the moment that vy$=1/2. Then comparing (D-41) with i
(D-36) shows that
S (w, T ¢ )
H (aow) = 02 (w) + § 2™ "0/ poct [a/2my o] (D-42) i
e n Y
where

K] _ b1, x|sX
Rect [}—(] " | 0, otherwise

Next, consider the case when y¢ > 1/2, so that the noise field is under
sampled spatially, and the portion of the spectrum extending beyond [-7,7) |

will fold back into [-7,7). Let er(a,w) be the folded spectrum

0
_ 2 E : _ _
er(oa,w) = on (w) + He(a + 217k,w), ac [-m,m) (D-43)
Kx=-o
where He(a,m) is defined by (D-42).
Then
l at+21k
S w +¢
_ 2 1 ( ' 2wy o) a+21k
er(cx,w) = o (w) + E — Rect Ty o |’ ae[~w,m)
kK=-w

N (D-44)




D.1l. Results from linear prediction theory. The applicable results from

linear prediction theory fall into two general categories. In the special
case of m = 1, when the line array of references and the primary constitute

a uniformly spaced line array, results depend upon the Toeplitz properties

of the hydrophone cross-spectral density matrix. The second class of
results which apply tom > 1 are from the more general theory of stationary
random functions. Most of the results to be presented concern the irre-
ducible prediction error, which, for the temporal prediction problem, is the
mean square error in predicting the desired number of steps ahead using
the infinite past. If EK(m) denotes the error in predicting m steps ahead

using K samples of the past, then

(0] 2
EK(m) = min E|{x(m) - akX(k) (D-45)
aK-l,aK-2,...,al""lo k=-K+1

where E(:) denotes expectation. Then the irreducible prediction error is

E (w) =lim E, (m) (D-46)

K-»co K

In the context of the cancellation of the extended source, the results
apply at a single frequency, so the notation must be changed to EK(m,w)
and E_(m,w). The parameter EK(m,m) is the spectral density of the can-
celler output at the frequency w using K reference hydrophones and with
the primary mad feet from the nearest reference. The E_(m,w) is the limit
on the single frequency canceller output spectrum as the array becomes

infinitely long (K+»). This clearly conflicts with the assumption of a plane




wave source, which requires that wavefront curvature be negligible across

the extent of the array. The irreducible error, E_(m,w), is therefore best
interpreted as a lower bound on the canceller output spectrum in the spatial
case. It should be noted that in numerical evaluations, given in Appendix K,
the lower bound was approached quite rapidly as K increased, so that K
may not have to be very large for EK(m,w) to be near E_(m,uw).

A basic result from the thef)ry of Toeplitz operators in the Szego

Theorem [15]

, which relates the irreducible prediction error, E_(1). to the
spectral density of the random sequence, Hx(m).
Theorem 1: Let a zero mean stationary random sequence, :x(n): » have

correlation function

Rk = E[x(n)x(n+k)] (D-47)

and power spectral density

z ].kon
Hx(a) = E Rke (D-48)
k=-x
Then
h K
= 1 = L -
E (D)= gr-nm EK(l) = exp| 3 / log Hx(a)da (D-49)

-7

When log [Hx(a)] is not inte grable on [-w, ), the right hand side of (D-49)

is replaced by zero. The theorem as given here is somewhat more restrictive




than given in [15] in that it assumes the existence of the spectral density,
Hx(a), rather than allowing for a spectral distribution that contains jumps
or that is not everywhere differentiable.

Note that under the last stipulation of the Theorem, any time log [Hx(u.)]
is not integrable, the irreducible prediction error is zero, so the process
can be predicted perfectly from the infinite past. Such a process is termed
a singular stochastic process by Lamperti [16] or a deterministic stochastic
process by Azego [15]. The condition under which the process is singular
which will be of interest here is as follows.

Theorem 2: A stationary random process is singular, i.e., it can be

predicted perfectly in the mean square sense from its infinite past, if

m

/ log Hx(a) da = - (D-50)
-7

This will occur if Hx(a) is zero for any ac[-n,7). Then any random

sequence whose spectrum is zero in some region on [-7,7) will be singular. |

Note that if on2 # 0 in (D-34), then the process is not singular, as would be

expected. In fact, the irreducible error will always be greater than °n2'

2

except in the trivial case of H‘((a) =0,
Theorem 3: Let the stationary random process x(n), have spectral density !

of the form

_ 2
Hx(Ot) =0, * on(a). HXO(OL) #0 (D-51)

D-15 !




Then E_(1) ~ onz. This can be seen by observing that

—
m m

1
exp| 5 f Qon(on)da exp
-7

]
~N
B I"‘
>
=
Q
o)
N
+
e o]
»
=
—
2
[ |
%
Q

= exp 2n0n2+§% «n | 1+ xo;cx) da
-7 On
kil
H_ (o)
-4 2 , X0 2
=0, €XP|3r / in |1+ - ) da 20,
-m n
(D-52)

since the argument of the integral is always positive if on(a) #0.

In terms of the cancellation of an extended source, Theorems 1 through
3 apply to the power spectrum of the canceller output, E_(1,w). As shown
above, the wave number-frequency spectrum, He(a,w), is directly related
to the angular distribution of a narrow extended plane wave source. These
theorems therefore provide conditions on the source distribution under
which complete cancellation is possible in the noise free (onz(w) = 0) case
and indicate that cancellation to the noise floor is not possible in the
presence of ambient noise.
Theorem la: Let #be an extended, uncorrelated, plane wave source as

defined above, distributed in the same plane as the reference array and

D-16




primary of the geometry of Figure D-1. In the case whem m = 1, the wave

number-frequency spectrum of the hydrophone outputs is

[eo]

1 at+21k +21k
H (0. w) = % (w) + Z -8 (ZTTY + ¢0,w) Rect {rm],a&:['ﬂ 1) (D-53)
k=-x

Under the condition that y$ = 1/2, this reduces to

H,(0,0) = o 2wy + L sI (W + ¢s0,w> Rect [ZTW] (D-54)

Theorem 2a: Let o (w) = 0 and assume that y¢ < -;— Then the extended

source gives

E_(1,w) =0 (D-55)

Theorem 3a: Assume that % (u)) # 0. Then by Theorem 3, the extended
source cannot be cancelled to the noise floor.

The results of Theorem 2 can easily be extended tom > 1 by observing
the following.
Theorem 4: Let E_ (m,w) be the irreducible error in predicting, in the minimum
mean square sense, the stationary random sequence, x(n), m steps ahead.

1f E_(1) =0, then

E,(m)=0 m=12,.... (D-56)




This can be proven by noting that, under the stationarity assumptions,

x(2) can be predicted perfectly using the infinite past, : ...y x(0), x(l):
if E_(1) = 0. Given ; ey X(-1), x(0)= , it is possible to predict x(1)
perfectly. Hence, x(2) can be predicted using } ooy X(-1), x(O)' with

zero mean square error, E_(2) = 0. By induction, (D-56) is true.

This result means that in the noise free case, the canceller output
power for an extended source tends asymptoticallv (in K) to zero, regard-
less of m, that is, regardless of the distance between the primary hydro-
phone and the reference array.

In the case when E_(1) = 0, it is often possible to determine the
asymptotic behavior of EK(I) for large K using the Strong Szego Limit

[12]

Theorem for Circular Arcs Applied specifically to the problem being
considered here, the Theorem is as follows:

Theorem 5: Let x(n) be a stationary random sequence with spectral
density Hx(a) and correlation Rk’ k=...-1,0,1,.... Let Hx(a) be
strictly positive on -A £ a < A with A < 7, and zero otherwise. Further
let de(oz) /da satisfy a Lipschitz condition with exponent greater than 1/2
on -A s o £ A. Then the minimum mean square error in predicting x(n)
given % x(n-K), x(n-K+1), ..., x(n—l)‘l using a linear combination of the

observations is asymptotic in K to L(K), where

A 2K+1
L(K) = G |sin (2—) (D-57)

D-18




and
m ‘ '
_ 1 -1 . A _
G=exp | o / log l H, [2 sin * (sin 7cos e)] ‘ ds (D-58)
-1

The theorem requires a modification of the version presented in [12]. The
modification is derived in the Supplement I to this Appendix.

Theorem 5 can be applied to the spatial cancellation problem by replacing
Hx(a) with He(a,w) as given in Theorem la. Inspection of equation (D-42)
shows that, due to the aliasing of the angular distribution of the source when
y¢ 2 1/2, the Theorem only applies when v® < 1/2.

Theorem 5a: Let y¢ < 1/2, and let

21 o) Q _
He(a,w) = 7 SI( —_—21TY + (DO, w) Rect [m] (D-59)

where He(a,w) is strictly positive on ~A = a < A, and where 8He(a,w)/8a
satisfies a Lipschitz condition in o with exponent greater than 1/2 on that
interval. Then the irreducible canceller output spectrum, EK(I,m), of an LMS
canceller using a line array of K references spaced d feet apart to cancel the
source from the output of a primary in the same line as the references and

d feet away satisfies

2K+1

EK(I,w) Vv G(w) |sin wy¢ (D-60)

where V denotes asymptotic in K and where G(w) is given by

b
G(w) = exp -2—11-;/ ; log He[2 sin_l(sin(md)) cos 9), w]{ a6 (D-61)
-7
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From this Theorem, it can be seen that the canceller output spectrum,

EK(I.m), goes exponentially to zero in K when y$ < 1/2 in the ambient noise
free case. Somewhat surprisingly, the rate does not depend upon the shape
of the source angular distribution, but only upon v¢. In evaluations of EK

(1,w) given in Appendix K for uniform angular source, (d-47) appears to

be a good approximation to EK( 1,w), even for modest K.
Note that if ambient noise is present, so that

_ 2

(D-62)
1 Q a
+ ; Sn (W + ¢0,w) Rect [m} , ag[-m, 'ﬂ’]

Then the extent of He(a,w) is [-m,n]. This corresponds to A = 7w, which
violates the conditions of Theorem 5. (With noise present, (D-62) may also
violate the Lipschitz condition). However, Theorem 3a has already shown

that Ek(l,w) approaches a positive floor as K+=.

In the extended source cancellation problem, the noise free case is of
somewhat limited interest. It would be desirable to characterize E_(m,w)
for m > 1 in the noise present case, which would provide a lower bound on
cancellation as the reference array is moved farther from the primary. This
can be done using some results from the general theory of stationary random
processes which do not depend upon the Toeplitz properties of the covariance

matrix.

D-20




In the noise present temporal case, it can be seen that

m

/ log [Hx(a)]da > ~o (D-63)
-

so that the process, x(n), is not singular. If the spectral distribution of
the process, say ﬁx(a) , does not contain any jumps and is differentiable

everywhere, then x(n) is a regular random sequence, (17 and

H (u) = / H_(a)da (D-64)
-m

A regular random sequence has a moving average representation

x(n) = Z Cy £ (n-k) (D-65)
k=0

where £(n) is a sequence of uncorrelated random variables. It can readily

be shown that the minimum mean square error predictor of x(m) given

:x(n)z n < ois[w]

(=]

R(m) = Z cl; £ (m-k) (D-66)

K=m




so that the prediction error is

m-1

2
E_(m) = Z e | (D-67)

k=0

Therefore, if the ck's in (D-67) can be found, the irreducible prediction
error for m steps ahead is known.

The restriction of the process to the class of regular random processes
will not limit the usefulness of these results in the extended source problem.
As an aside, however, this restriction need not be made at all. As long as

the process is non-singular,
n
/ 2n Hx(a)da > - (D-68)
-
then it has a unique decomposition,

x(n) = u(n) + v(n) (D-69)

where u(n) is regular, v(n) is singular, and u is orthogonal to v. Since
v(n) is singular, it can be predicted perfectly given the infinite past, and
need not be considered in determination of the minimum prediction error

for x(n). As a regular process, u(n) has the moving average representation,

un) = Z d, E(n-k) (D-70)
=0
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where £(n) is an uncorrelated random sequence. The irreducible m step
ahead prediction error for u(n) (hence, for v(n), taking into account the

singularity of v(n)) is then

m-1

E_(m) = E la, | (D-71)

k=0

These results are rigorously derived in Lamperti {16] or Doob [18].

Even without finding the c,'s of the moving average representation (D-65)
provides a useful result for the cancellation of a narrow extended source.

By (D-67), the minimum canceller output power in the noise present case,
E_(m,w), is a non-decreasing sequence in m. The cancellation floor there-
fore cannot become smaller as the reference array is moved away from the
primary.

The ck's in the moving average representation of a regular process can
be found using a factorization of the spectral density Hx(a), given by the
following theorem from Doob ! 18! .

Theorem 6: Let {x(n)} be a stationary, zero mean regular random sequence
with spectral density, Hx(a). Then the coefficients of the moving average

representation are uniquely determined by the following

m
= 1 D-172
e, = exp (5= f log H, (o) da ( )
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E_(m,w) = lim EK (m,w)

K>
Then
m-1
E_(m,w) = E ick(w) ! 2
K=0

where the Cp (w) satisfy the equations

it
c, (w) = exp 2%? / log He (o,w) da

-

and

z e () 2 =exp{ o — Z b, (w) z“§
n=1

n=J_

where

m
-1 -jna
b (w) =5 / log [H, (a,w)] e da
~T

specifically, from Supplement II,

ej(w) = b (w) eylw)

C;(w) = [blz(w) + bz(w)] co(w)

(D-175)

(D-176)

(D-77)

(D-78)

(D-79)




X0 b [s <]
*
E A exp‘fg + b_z° (D-73)

n l n ‘
n=0 n=1
where
s
b = ﬁ}’?f log[H (a)]e R (D-74)
-7

By expanding the right hand side of (D-73) in a power series, or by differ-
entiating (D-73) and letting z+0, it is possible to obtain explicit expressions

for the ck's, and hence, for

m-1 2

Eco(m) =E !ckl

k=0

However, the expressions resulting from this procedure are quite complicated.

Supplement II to this Appendix derives expressions for Cq:C1sC9:C3:Cy>
and Cgas a function of the bk's defined by (D-74), which allows evaluation

of E_(n) for m = 1 through m = 5.

As before, the temporal linear prediction results given here can be
applied to spatial LMS cancellation by replacing Hx (a) by H, (a,.w) given

in Theorem la. This yeilds the following result;

Theorem 7: Let EK (m,w) be the output spectrum of an LMS spatial canceller

as defined above, and let He(a,w) be defined as in Theorem la. Denote

s

/
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c; (w) = [b13(u) + 3b1(w) bz(u)) + bs(m)] co(w) D-82)

c:(w) = [b14(u)) + 6b12(m) by(w) + 4b(w) bg(w) (D-83)
+3b.%w) +b (w)]c ()
2 4 0
) =169 (W) + 10b.3w) + 106, 2(w) b(w)
5 1Y 1 1 3
+15b_(u) b22(w) + 100 ,(w) bylw) + 5b () by(w) (D-84)

+b5(m)] co(w)

Supplement I: Strong Szego Limit For Circular Arcs. The Strong Szero

Limit Theorem for Circular Arcs is given in [12] as follows;
Theorem 8: Let f be a function satifying f ( 8) = f (27 - €) which is

supported on a closed arc o < 6 <27 - « and which when restricted to that

arc is positive and satisfies a Lipschitz condition with an exponent greater

than 1/2. Let Dk[f] be the Toeplitz determinant

m
- 1 i(p-q)9 _
Dy (f] = det (4 [ e £(9) dé (D-85)
0 .

Then as K+« , one has the asymptotic formula

D [f] » 91/12 38" (-1) (sin %) 4 g% 4G[F]K(cos %) (D-86)

p—




where if

log £(8) = Z £, e/° (D-87)
k=w

one defines

F[f] = exp(fo) (D-88)
GIf] = exp 1 k£ f (D-89)
k=1
and
F(8) =f (2 cos 1 (cos %cos 6)) (D-90)
[19]

Here, L'(x) is the derivative of the Riemann zeta function. The
proof of this Theorem is given in [12],

Theorem 5 requires the limit of the Toeplitz determinant when the
function f satisfies all the conditions of Theeorem 8, but is supported on

the closed arc -8 < 6 < 8. In this case, a Corollary to the Theorem may be

stated as follows;

Corollary 1; Let f be a function satisfying all conditions of Theorem 8,

except that its region of support is the closed arc -8 < 8 < 8. Then the

Toeplitz determinant,




m

- 1 ip-a)s o . _
D [f] =det | [ e f(3)ds (D-91)
M

0 o
Holl
oo
-

has the asymptotic formula as K+«

1/12 35" (-1) g\ 174 . . \K?
D, (f] ~ 2 e cos £ E(F1%K ‘G[F)¥ (sin £
(D-92)
where G and E are as defined in Theorem 8 but
_ S | .. B
F[3] =f |2 sin sin 3 cos 6 (D-93)
Proof: Consicar
il
1 jné
-
where f has support on [-3,8]. With the substitution 8 = ¢ -7,
m YAl
1 / e f(9)de = 41 / (O™ ¢(4-mdy (D-92)
2w
i) 0

m
= -D" —é;f’ ™ g(9)d0
0




with g(9) = f(¢ - 7). Note that g has support on [7 - &, n + 8], and letting
a=rm- B, g has support on [&, 27 - «]. Thus if f meets all the other
requirements of Theorem 1 on [-8, 8], then g satisfies the conditions of
Theorem 1.

In order to relate

27

det ((—1) P-q E%? eJ(P-)® g(¢)d¢) (D-93)
0 p=0,1,...K-1
q=0,1,...K-1
to
2
det(z—}T/ el (P10 g‘(cb)dab)
0 p=0,1,...K-1
q=0,1,...K-1

the following theorem may be used.

Theorem 9: Let two square matrices, A and B be defined by

A= (a(p,q))

and

B = ((—l)p—q a(p-q))

Then det (A) = det (B)
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Proof: Let M be a diagonal matrix

r M=  diag ((-DP)
p=0,1,...K-1

and note that

M= diag ((-»7P) =M
p=0,1,...K-1

Now, the matrix B can be written in terms of A as
B = MAM ™! = MAM
Therefore
det(B] = det(MAM] = det’(M] det [A]
= det[A]

Using this theorem,

TT
1 i(p-q)®
det (-ﬁ [ e )f( 8)de _ i
o ;0, .o

L
-

2m

= det ((-1)""1 ei(p"Q)¢)g(¢)d¢

o=

q=0,1,.

= det(%?‘[
o

p=0,1,..

(D-94)

(D-95)

(D-96)

(D-97)

(D-98)
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where g(¢) =f(¢ -m) is supported for ¢c [a, 27 - o] with o = 7 - 8. Further,

g meets all the requirements of Theorem 8, so that limit of the Toeplitz

determinant, (D-91), can be found. The result is that

Lo 1 1 K’
D, [f] ~ 2 12 3% '¢-1) (sin I‘-;}) YR X Yok (cos 1'23) (D-99)
. 1 1 K2
- £ / q 4
= gl2 35D (cos %) E(F12k Grri¥ (sin g_)
where if
log g(¢) =Z gx LS (D-100)
k=x
define
Glgl = exp [gol. (D-101)
and
Elg] =exp ; kg, € (D-102)
k=1
Further
_ -1 -8
F(¢) =g (2 cos (cos —5 - cos ¢)) (D~-103)

4y
=g (2 cos 1 (sin %cos ¢))
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but
g(d) =f (m9¢)

SO

g(z cos -l(sin %—cos ¢)) =f (n - 2cos ! (sin -g-cos ¢)) (D-104)

Let the argument of f in (A-23) be x, so

X =m- 2cos -l(sin %— cos cb)
or

cos x_;n_ = gin %cos ) (D-105)
so that

x =2sin ! (sin 8 cos ¢) (D-106)
and

F(¢) =g (2 sin '1(sin 5 cos ¢)> (D-107)

This Theorem allows the determination of the asymptote of the ratio of
Toeplitz determinants as follows:
Corollary 2: Let f be a function satisfying the conditions of Corollary 1,

and let DK[f] be the Toeplitz determinant

D-32




i .
= 1 j(p-q)6 -
DK[f] = det 7 / e f(e) dé (D-108)

/ 1,...K-1
i 1,...K-1

Then as K+« , the ratio DK+1[f] /DK[f] has the asymptotic formula

D (f] 2K
K+1 . B . B -

with G and F as defined in Corollary 1.

Proof: By Collary 1,

1 K2+2K+1

1
1 - ~
0 t - @ 4 2 4 K+1 in £
DK+1[f] . 912 e3§ (-1) (cos 2) E[F] (K+1) G[F] (sm —2)
DK[f] 1 2

1Y~ '7} — K
gt23¢'CCD (cos %) ErF12k 14 grr¥ (sin %)

-1/4 2K+1 (D-110)
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Supplement 1I: Evaluation of Irreducible Prediction Error for Specific

Values of m

From equation (D-78),

[=.]

b o0
Z * _n 0 . z: n
cy Z =exp -5 bn Z (D-111)
n=1

nu=0
Let
c@y = e 2 (D-112) |
n=0 Q
b d ;
B(2) = —2°+ b 2" (D-113) i
n=1 %

Now, denote
m m
c™(z) =282 g™z .4 BE) (D-114)
az 4az
and note that form > 0,
E 3
c™ 0y = m! e ", B(M (0) = m!p (D-115)
m 1
D-34 i
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h
+
H
i
!

Using (D-111), and dropping the arguments, Z, for convenience

C(1)

c(?

2
¢® - expip] 8D {B(l) +B(z)}

= expl[B]

= exp[B] BV

(L2 (@
lB + B

+ exp[B] {23‘1) B(® . 3(3)§

3
= exp[B] {B(l) +38D &, B(3)€

3
c® = exprp) BV {B(l) + 38D @, B(3):

2 2
+ exp[B] 233(1) B2 4 3p(®" 4 3D g3, B(4):

4 2
- explB] {B(l) + gD @, ZD B

2
+38(® B(4)}

5 4 2
c® = exp(B] ;B(l) + 1081 () 4 105D 53

#1581 p(2)" 4 1o g

2

+5(D g1, B(S)}

Therefore, setting Z = 0 and using (B-5) and (B-6),

m

, E
C =
m

k=1

()

x
®m-k Pk

(D-116)

(D-117)

(D-118)

(D-119)

(D-120)

(D-121)




where, from (D-117)

%

)

exp (b0/2) (D~-122)

L. 1 *
Some specific cm’s are then

* % B _ j
¢, =¢gby =D, exp (b,/2) (D-123) j
*  x *
cz—c1b1+cob2

(D-124)

_f.*. 2 * _ 2
= ¢ b1 tep 8y = [b1 + b2] exp [b0/2]

L * *
c3—c b, + 2¢c b2+c0b

271 1 3

(D-125)
*

* 0 %
0 c,+c,. b

2
=[by +Dbylbycy+2b, bye,+eyb,

- 3
= [b1 + 3b1 b2 + b3] exp (b0/2)

*

*_ + %* * b
c4—c3b1 3czb2+301b3+c0b4

3
1

;+3b 2

* 2
b, + 3b1b2 + b3] b1 C 9 [b1 + b2] o
(D-126)

* *b
*3b,bycyteyb,

4

2 2
[b1 + 6b1 b2 + 4b1 b3 + 3b2 + b4] exp [b0/2]

D-36

| |'




* b * *b
c4b1+4c 2+602b3+4c1
2 *
+3b2 +b4]c0
*+ 6b
+b2]c0
* *
+4b,b,c . +b.c
+10b2b3+5b1b
+ b5] exp [b0/2]

From (D-76)

(D-127)

(D-128)




APPENDIX E: CANCELLER PERFORMANCE IN TERMS OF
DISCRETE PROLATE SPHEROIDAL SEQUENCES




APPENDIX E; CANCELLER PERFORMANCE IN TERMS OF

' DISCRETE PROLATE SPHEROID

The power spectral density of the optimal canceller output, from

equation (G-17) of Appendix C is given by
E (w) =S - s, (st ( E-
K w) = u(w) 8; (w) N (w)s, w) (E-1)

with

Su(w) = PSD of the primary

Se (w) = CSD matrix of the reference hydrophone outputs

381 (w) = CSD vector between the primary and reference hydrophone

outputs

For the far field extended source described in Appendix A, assuming

a uniformly distributed, narrow, spatially uncorrelated source, the statistics

of the hydrophone outputs are

S () = 2¢0E2(w) +g 2 (E-2)
|
_ 2 -j—— J cos 4)0 +
8;=0p (We G's, (E-3)
where (E-4)
T

8,° [so(o,m), s, (La,... sO(K-l,w)]

sin [(J-p)-‘*—‘f—qa sin ¢J
s (E-5)

S (va) = -
° [z Gp 2sin g ]




_ 2 2 +
Se =0, (w)I + Op (w)G Seo(ﬁ)G (E-6)
where
sin [(p-q) 49 5 sin %]
Seo(w) = 1] wd . ' (E-T)
3 (P —sin ¢ p=0,1,...K-1
q=20,1,...K-1
and
-j ch— p cos ¢
G = diag |e © (E-8)
p

The inverse, Se;l(w) , can be obtained in terms of the eigenvalues and
eigenvectors of S e o(w ), which can be defined in terms of the Discrete
Prolate Spheriodal Sequences (DPSS) as discussed in Slepian [13].

Note that (E-7) can be written

Seol®) = %(Smﬂ[?gxxg?j)] ) p=0,1,...,K-1 (E-9)
q=20,1,...,K-1 \
with
Y = % sin ¢o
W=2¢0y
A = wavelength at frequency w




Now, the DPSS satisfy

K-1
sin[2 7(n-m)W] (k) ) (x) )
> (2rnd v kW =y WV &, W (E-10)
m=0
for k=0,1,...K-1, where VI (k.w)! o, ., is the k2 DPSS and

where )\k(K ,W) is the associated eigenvalue.

can be written in vector form as

Equation (E-10) for k=0,1, ...K-

+ _ (k) -

where
T
s, = [sn(o), s (1), ... sn(k—l)] (E-12)
sin [271’ (n—q)w]

sn(q) m(n-q) (E-13)

and
(k) (k) T
Vk (K,wW) = [Vo (K,W), V “1 (K, W)] (E-14)

|
|
|

1




Therefore

p— A —
s vk, w)
So o
sl v.xw = &KW | vE&.w) | k=0,1....K-1 (E-15)
=1 __}( ’ k ’ 1 ’ yl, 6o
+
s (k)
i o)

Comparing (E-15) with (E-7), it can be seen that
s (W)

s1(w) | W=y (E-16)

+
Sg(wly

with v = fd/c sin¢o and w = 27 f. Therefore, multiplying both sides of (E-15)

by 1/y gives

-1 -
S V) (K,be) -2 xk<K,y¢>) v, (K,y@) (E-17)

In this form, it can clearly be seen that the set of eigenvectors:Yk(K,W):,

k=0,1, ..., K-1, of Seo(w) are the \_fk(K,W) given by (E-14) with

associated eigenvalues [% 11 (K,W)]. Noting that G is diagonal and that

cl- G*, it can be seen that




+

[GS,, Gl G' ¥ (K.W) = \(K.W) G* Y (K,W) (E-18)
K

eo

so that the G* Seo G has the same eigenvalues as Seo’ but its eigenvectors

gt ] i -
are ,G (K, W)\ k=01, ...K-1" Consequently, S, has the same eigen

: . | )
vectors, but its eigenvalues, (K W)‘ k=0,1, ...K-1 are
s 2

- _ .2, .

k (K,W) = ot Y 11(1(,W) (E-19)
Therefore,

K-1
-1 -1 + +
= N -
Se kg (K.W) G Yk (K,W)yk (K,W)G (E-20)
k-o
and
K-1 9
§fse‘1§1 = E L k.w |57 G ¥ (K, W)| (E-21)
k-0
Using (E-3) gives
. wd
+ C o2 Faaty TS, oy
5, G ¥y (K,W) = 9 S8, GG 'Y, e = 0 5,V (K, W)e
(E-22)
but
K-1
§Jyk (K, W) = z : sin[27 (J-m)vyd] V(k)(K W)
[(I-m)2my] "

m=0

+ QCQJ cosc:>o



K-1
_1 Tosin[27(I-mW] (k) =1 (k) .
=3 E T (F-m) Vo (K.W) 7 MKWV UKL W) (E-23)
m=0

by applying (E-10) aguin. Substituting this in (E-21) yields

K-1 o, 4Ak2(K,W) 0
+. -1 (k
5)8. 8 = 2 ) ) V5 kW]
k=0 | ¥ %n * Yo A(K,W)
K
Therefore
K-1

. 2067 3, %K, W) ) 2
E=0"+ o 20 - = ]VJ (K,W)| H(E-24)
Y Oe ool 200 A0 (KL W)

For the moment, suppose that the noise field is totally due to the extended

2
source, o, " =0, So

=
i
—

2
_ 2 1 (k) "
E=o" 20 - 3 Ak(K,W) !vJ (K, W) | (E-25)

w
1]
(=}

A good check on this result is to let J = J, for some 0< J, <K-1,s0

that one reference is coincident with the primary hydrophone. This should

give perfect cancellation. In that case

K-1
Z KWV &, v (kW) |
k=0 o] [o]




—— esmee RS

K-1 K-1 sin[ZTT(Jo - W] (x) (10
) Z md_ - 2) \A (K,W)VJo (K,W)
k=0 =0 0
K-1 . K-1
sinf27(J_ - )W)
= 0 (k) (k) ]
- O REED) z: Vo KL WV (KL W) (E-28)
2=9 ° k=0 o

But the DPSS are orthogonal when index limited to [0,K-1]

K-1
v &,wv, 1 ®,wy =5 (E-27)
k=0 ° °
SO
K-1 :
2 KWV & wv B k,wy = aw = 2P (E-28)
k=0 ° ° ”

Substituting this in (E-26) gives E = 0 indicating perfect cancellation of the

source as it should when a reference is coincident with the primary.
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APPENDIX F: RESULTS FOR THE UNIFORMLY DISTRIBUTED FAR FIELD
MODEL BASED UPON TOEPLITZ PROPERTIES OF THE HYDROPHONE CSD

When the extended source is narrow in the sense of (A-24) and spatially

uncorrelated, substitution of (D-53) into (D-49) yields the irreducible canceller

output spectrum, E_(1,w) as

™
E_(1,0) =exp[?1n— f In [H (0,0)] dv
-7

x©

21k + ¢

T S (w,L o)

= exp 2% f in [oi(w) + E —I——vﬁ Rect Oi;—:% do
-T . o

_ 2 1 T 1 Z a+21k
_on(w) exp —Z-”ITT 1n l:l +— SI (m, Ty + ¢°)

Un(w) Y k=-w
a+21k
Rect [ 21ry¢] ] da

9 1/2y 1 K
= on(w) exp (Y f In| 1+ - Z SI (w,¢+ v + d)o)

~1/2v on(w) Y oo

Rect [L’%ﬂ] ] d¢ (F-1) ';

When Y¢ < %, using (D-54), this reduces to

¢
E (1,w) = oﬁ(w) exp Yf in [1 + —;—- Sp(w. o+ ¢ )] d¢l
- (w) ° ’
YOn

(F-2)




In the case when extended source is uniformly distributed on [¢ o—d> ,
®0+d>] , as in (A-40), then (F~1) and (F-2) can be evaluated in closed form.
Since the uniform source distribution is a reasonable representation for a
number of sonar problems, this result is quite important. Let

of(w) . belo - @, 0+ 0]

SI(¢,w) =
0 , otherwise

and define an integer, n, such that

n n+l _
T < (F=9
The positive alias in Hf (a,w) as defined by (F-1) centered at k/vy extends
e

from (k/y) - ¢ to (k/y) + ¢, so if

=<|®

-% < (F-4)

-1

2y
th ces . - . . -1 1

the k  positive alias extends through the interval of integration, 53y |

If (F-4) is met, the kth negative alias also extends through the interval of

integration. Let k o be the number oi aliases extending completely through
[;—t—,%] . Using the above, ko = Lycb - 1/2J where I_XJ is the largest integer
th

< X. The next, (k  + 1), alias extends from (k +1)/y ~ ¢ to (k + 1)/y + ¢

First, consider n (in (F-3)) even, so that

k = |vo-5)=3-1 (F-5)

Therefore




(ko +1)

-n _ -
T -% = 3y $ <o (F-6)
since, by (3-98)
n
Yo 25
th ps . n 1 .
Hence, the (k ot 17" positive alias extends from 2y 9 to 7y while the
negative alias extends from % to - ‘fny + ¢, overlapping as shown in Figure
F-1.
Ar Hf(w)
effect of (k_+1)E1 | |
aliases I | sum of original
T——— - — f— -4 - — —I‘—— spectrum plus 2k,
| | ( aliases
I | : : :
-1/2Y -d+n/2Y 0 ¢-n/2Y 1/2Y

Figure F-1. Folded Spectral Density for Uniform Source, n even

Using this, there are 2ko aliases (ko positive plus ko negative) extending
through [-1/2y, 1/2y] plus the prunary spectrum and the sum of the (ko+1)m

aliases. Hence, in (F-1)




0o

2 Kk 6 +Kk/y
Z of (& + X+ 0,) Rect [—-———@ ]
k=-x (F"7)

: }
n
v "¢

= of(w) {(2k0 +2) + Rect

-— -9

1
n
2y

= o%(w) {n + Rect

Substituting this in (F-1) gives

1 i
exp [71? f in [Hf(x)] dx]

-

= ci(w) exp | Y

- 2
7y cn(w)Y
- 1]
1 —7%-+ d
2 2
9 Y nol(w) o?(m)/oz(w)y
= o (w) exp | ¥ In| 1+——[d¢ +7Y in|1+ n de
/1 g (W) v 2
2'Y n _ b nOI ((.U)
I3 1+
L - On(w)Y |
F-4




r 1r 7 2v¢$-n
nof (w) OZ (w)
=10, (w) + 1+
n Y 2 2
%N (w) v +noI (w)
2yd-n
o (w Y3 () Yok (w) \-1
= n + —5 1+ [n+ A
! o (w) of (w)

(F-8)

Now define W = y¢ and note from (A-41) that the power from the extended

source is 2<I>CJI2 (w).

Then
2@012 (w) 1 2y¢-n
Ew(l,w) = N S 1 +§ (F~-9)
where
2w 0r21 (w)
S=n+ (F-10)




This result is identical to that obtained by Slepian for the temporal linear
prediction of a perfectly bandlimited random process in uncorrelated noise.
However, Slepian considered the problem in terms of the Discrete Prolate
Spheroidal Sequences (DPSS). The DPSS and their eigenvalues are associated
with the hydrophone CSD matrix produced by the uniform source. This results

depended upon the asymptotic evaluation of several complex integrals and did not

demonstrate the effect of aliasing of the wave number-frequency spectrum,

He(a,w), on the linear prediction error.
If n is odd then

k, = l“"l] = “7'1 (F-11)

-

N

and the (k_ +1)™ positive alias extends from (k DA ~& to (k +1)/Y+9,

where

(k,*1)
Y

-¢ =ntl _ (F-12)
2}{. $ >0

since Y@<n+l. Then the k, * 1)th aliases do not overlap, as shown in
2

Figure 3-2. Therefore, by the same argumer’ : used the even case,

He ()
effect of * P iqinal
__'J I sum of origina
(ko + I)ﬂ alias {}_._ __.--!4-—— spectrum plus 2k
! ! liases
| ) | | 2
| | |
‘ I !
| i ' '
| ( I )
- ' - $ — W
n

LN
/Y B 0 o- - 127

Figure F-2, Folded Spectral Density for Uniform Source; n odd




F.1 Interference Only Case

As mentioned above, the case where the noise field consists of only a nar-
row extended source with no ambient background does not occur in sonar.
However, consideration of the ambient noise free, 0121(‘”) = 0, case yields
insight into the behavior of the LMS optimal canceller in the field produced
by an extended source. Consider the irreducible canceller output spectrum,

E_(1,w) when

orzl(w) =0

It is easily shown that (F-9) reduces to

2% 012 (w) 1 2W-n
E_(1,w) , = —5—n (1 +ﬁ) (F-16)
c(w) =0
n
with n defined as the integer such that
n n+l
<Y d < - (F-17)
Therefore, if y¢ < %, so that n=0,
E_(1,u0) = 0, vo <2 (F-18)
2wy = 0
n

and the extended source can be cancelled completely, at least asymptotically
in K, the number of references. On the other hand, if v¢ > 1/2, Ek(l,w)

approaches some positive value as K becomes large. The significance of this




© o+ k/Y _
3 o 2w, b+ ‘,f( *+o,) Rect [ 3 i =
k:-

©

2 ‘ -.a $ + «
® (w)l(2k0+1)+Rect %(‘I"_ZI}T)] + Rect %(Q'Tnﬁ' ’

2 ‘ -a o +a )
=0 “(u) yn+Rect {, . 1 + Rect| 1,5, n__ (F-13)
where
g’“ﬂ 3
="y "~ 2% (F-14)

Integrating this as in F-8 gives

1
v [ 2 ZY nop £(w)
expls ¢n Hf xdx { = L (w) QY in |1+ 3 1 do
ks d 1 U'n (W)Y
T2y
n+l F:S 1
- —_ 2 2
2Y
2Y o275 2y po |y oL @on (DY
+Y nj1+ 5 de +Y ' 2
1 ne . 2w noyp (@) .
-5 #+271 ntl 14—
2 3 oy ()
Gn (W)Y i
_D .n i
. ) 7 2) = oy 2 e
= (“,,)+“°'Y 1+ —5 5 1+ (‘“‘Lz
on (w)y *no; (w) on (W)Y *nap (w)
(F-15)

which is the same as (F-8). Therefore, n odd yields the same result.




fact can be appreciated by observing Figure F-3, which shows E_(1,w) as a

function of v% for v > 1/2. Clearly, when y¢ > 1/2 the cancellation of the
extended source is extremely limited. The condition v} < 1/2 is therefore a
spatial Nyquist condition, with

Y =3

/

d .
T sin cbo

the spatial sample interval, and ¢, the source extent, analogous to bandwidth
in the temporal case. This result should be no surprise given the equiva-
lence of the temporal linear prediction problem and the spatial cancellation

problem developed in Appendix D.

a8
Ep(L,w)
096 r

0.94 L 1
[X] 10 15 20 25

Figure F-3. Irreducible Canceller Output Power
vs. W for Uniform Extended Source
in Noise Free Case
Using the Strong Szego Limit Theorem for Circular Arcs [12], as discussed
in Appendix D, it is possible to determine the asymptote in K of EK (1, w)

for the uniform, narrow, spatially uncorrelated source. For this source in

the noise free case the hydrophlone CSD is, from Appendix A.

sk(w) = se(p,p+k,w)

2 sin[27(p,q)W]
op (w) 5 (p-q) (F-19)
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But from (D-38)

T
_1 ika
Sk(m) = o f He(o: ,w) e da
-

so if y$ < m, choosing

02 (w)

H (0,w) = Rect [T‘%‘a] acl-T, 7] (F-20)

where

L Liad

] - Lee(f ]

Rect [
0, elsewhere

yields the correct Sk(w). This function, He(a,m) satisfies the conditions of
the Strong Szego Limit Theorem, stated as Theorem 5a in Appendix D, so

that

2K+1
] (F-21)

Ek(l,w) ~ G(w) [ sin nmvy¢

where ~ denotes asymptotic in K and, from (D-58),

02 (w)

5 =1 o .
Rect 2 sin [sin(™W) cos6] de

4TW

G(w) = exp [2-117 log




where

foct | 2.8in '[sin(rW) cos 8] | {1, |2sin [sin(mWcos 6] | < 2w
! 4w } 10, otherwise - (F-23)

== — ~sin(mW)

;.-.4._ — — cosBsin(nw)

|
|
i
) 2 X
N
sin-l[sin(ﬂw)cose]

Figure F-4. Relationship Between mW

sin x

and sin-I[sin(nW) cos €]

But from Figure F-4, it can be seen that

-

sin” L[sin("w) cos 6] < |mw|, all Be(-m,m
or
2sin” {sin("W) cos 8] < |27W], all 6e[-m,m)

which implies that

t

1 T olz(w) olz(w)
G(w) =exp |5~ log Y ds| = . (F-24)

-7

so that

oz(w)

EK(I’N) ~ (F‘25)

]2K+1

[sin ™™W




Thus for large K, the canceller output spectrum goes to zero exponentially in

K, with the rate dependent upon sin (™W).

F-12




F.2 Interference Plus Noise Case

When ambient noise is present, the change in the irreducible canceller
output spectrum, E_ (1,»), as W transitions from W<3 to W>2 is not quite as
dramatic, but still supports the notion of W=} as a spatial Nyquist criterion,

particularly at high interference to noise ratios. Figures F-5, F-6, F-7, and F-8

show
Ep,w) = M%‘,jﬂ (F-26)
204 “(w)

as a function of W for interference to noise ratios of 40, 30, 20, and 10 dB,

respectively. The interference to noise ratio is defined as

29 crrz (w)
— (F-27)

T (w)

INR =

When noise is present it can be seen that it may be necessary to choose W signifi-

cantly less than 1/2 to achieve acceptable cancellation, even with a larte number of

reference hydrophones. Of course, from Appendix D, the extended source

cannot be cancelled to the noise floor when crnz(w) # 0.

For high interference-to-noise ratio, 2<I><rI2(w)/ (rnz(w)>> 1, so that in

(F-10) for n>1
San (F-28)

and (F-9) is approximately

2
2®0."(w) 1 _
Em(l,w)a_zi_w. n(1+n ) (F-29)

F-13
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Hence, for high INR andY ®>1/2 (n>1), the interference plus noise case reduces

approximately to the noise free case.




APPENDIX G: CANCELLATION OF A SOURCE PRODUCING AN
EXPONENTIAL HYDROPHONE CROSS-SPECTRAL DENSITY MATRIX




APPENDIX G: CANCELLATION OF A SOURCE PRODUCING AN
EXPONENTIAL HYDROPHONE CROSS-SPECTRAL DENSITY MATRIX

le Jd
d +—d da\ ‘-d .-l-——md
~— - —0- { % * -« —e
\———-———\/-—h_/ PR IMARY
REFERENCES

Figure G-1: Array Geometry for Cancellation

Consider a line array of K reference sensors used to cancel, in the
minimum mean square sense, an interference from the output of a primary
hydrophone which lies along the same line as the references. Let the
references be spaced d feet apart. and let the space between the nearest
reference and the primary be md feet, as shown in Figure G-1. Suppose
that the ambient noise field produces zero mean noise with spectral density,
on2(w). at the hydrophones, uncorrelated from hydrophone to hydrophone.
In addition, the noise field contains an extended interference which
produces zero mean noise at each hydrophone with the cross-spectral

density between hydrophones spaced kd apart given by

-B(w) |k |d

o twe (G-1)
Then the cross-spectral density (CSD) between the pm and qt—h
hyrdophone outputs is
_ 2 2, -B(w)[p-q|d -
$o(P,q,w) = 0, (‘”)qu + op (w)e (G-2)




while the CSD between the pt~rl reference and the primary is

“B(w) o~
2 eB(“)'p Jld

se(p.J,u) = (w) (G-3)

Appendix C developed the power spectral density of the minimum mean

square canceller using K references as

det [SH(K,w)]

Eg (&) = G s (K, (G-4)
where ‘
S, (K,w) = (se(p,q)) 00,1, .K-1 (G-5)
p=0,1,...K-1
and
SyK,w) = Se(K,w) §1(K:w) (G-6)
s (K,w) S (w)
with
5,(K,0) = [s_(0,d,u), 5, (1,3,0),..., 5, (K-1,5,)1T (G-T)
s{9= o Z(w) + o2 (G-8)




For the model being considered here, it can be seen that

S (K.w) = Olz(w)

with

and

SH(K,w) = (w)

[ 0 1 2
0

B +p 2

K-1 K-2 .K-3

(o)
©
L9

1
2 Se(K,w)

9 (w)

m+K-1 m+K-2 . . . .
o P

. K-2 K-1
(& e}

1 _m+K-1
o)

3 L_

p (G-9)

om+K-2
(G-10)




G.1 Special Case: m =1

1 In the special case where m = 1, both Se(K,u) and SH(K,w) are Toeplitz

matrices. This allows use of the results of Szego[15]

, as discussed in
Appendix D, to determine the irreducible canceller output power for the
LMS canceller with a source producing an exponential CSD. It will be
convenient in this Appendix to explicitly indicate the value of m in the

notation for the canceller output power, so let

EK(m,w) = EK(w)
md = distance between reference array and primary

From Appendix D, let

S, = Se(p,p+k,w) any p

K
so that
- m
So 51 S2 - Sk
SeoK:w) =18, § S - Sg-2
S Saer - - - Sg

Then from Appendix D, the irreducible canceller output power at frequency
w is

E (1,w) = lim EK(I,w)
® K>x

T
= exp % / In He(a,m)da

-m




where

- jka
He(a.w) = E Ske
K = -
In the special case of an exponential CSD, (G-2),

- k|
Sk = B8(k) + p

with

1, k=0
§(k) =
0, otherwise

then

det [Sy(K,w)] = [0, %w)1¥* det [S, (K+1,w)],

det [S,(K,w)] = [o,2()1¥ get [s, (K, u)1;

and

He(a,w) =B + Z p‘k Iejka

;

1-2 pcos a+p

- B(1+02) + (1-02) - 2B8pcosa
1*2QCOSOL+£)2

(G-19)




therefore

In He(a,w) = —ln(1+p2) - In(1 - 2p cos o)

l*f-p2
(G-15)
+ In [B(1+02) + (1-02)]+1n (1- 22 8o 3 cosa)
B(1+p%) + (1-p°)
Fortunately,
X
i
[ In [1-Acos a]da = 27in [1*%‘_] (G-16)
=T
SO
™
2—17 / In [1- -22_cosa] da = ln (G-17)
1+p
-.n’
and
L ] +\/1 ( geo - )2
3 | m |1- 228" s~ cosa|da=In B(;“’ ) * (1-p7)
= B(1+p™) + (1-07)
"(G-18)
Then
G-6




1t
1 - 2, _
e [ln H(a)da=-1n (1+p7) - In 5

(140%) + (1-0°
2

(]

+In E3(1+02) + (1-92)] + In

o |are®y + Vaseh? - 20)’ |
2

e 3D + a0 + Visare® + -0’ - (280 ]
2

=3

2 2 2 2..,2 2
=1In [8(1+o ) + (1-p7) + /[B(lgo Y+ (1-p )]~ - (28p) ] (G-19)
Therefore

[C!Iz(m)]K+1 det [Se(K+1,w)]

E_(1,0) =

[olz(w)]K det [S_(K,w)]

olz(w)exp ne fln H_(0,w)¥a

“m

2, . B(1+p2) + (1-p%) +V[B(1+p%) + (1-091% - (8p)?
op (w) )

(G-20)

i
1
1




Now as p + o (for example, as the hydrophones move farther apart,

d » o),
tim E_(1,0) = o (w) EE2YE_ 26 20 4 g 2w (G-21)

p >0

which shows that there is no cancellation, as would be expected. On the

other hand, as p -~ 1, the references become coincident with the primary and

. _ 2
lim E_(1,w) = 9, (W) (G-22)
p>1
which indicates perfect cancellation.
Next, consider B8 +~ o, indicating the noise free (interference only) case.

Then ‘

2
lim E__(1,0) = 0, %(w) (1 - 09 (G-23)
B+o
Therefore, even in the absence of a noise floor, the interference is not
cancelled completely. This is a significant difference between the exponential
cross-spectral density and the sin x/x CSD considered in Appendix F.

G.2 General Case; m>1

Return to equation (G-10), and observe that if the Kth column of
SH (K,w) is multiplied by pm and subtracted from the last column (which

does not change the determinant), it becomes




o
2 S _(K,w) .
op (W) LR : (G-24)
9 (w) o
| _ - Bpm
pm+K-1 ... oM B+D°—02m
Repeating this on the Kth row and the last row gives
- -
~ o
] o
2 S_(K,w) . -
op (W) N : (G-25)
5 (w) (o]
m
L | Bp
00...0-8p" (B+0°- 02m+602m)

Under these operations, the determinznt is unchanged, so det [SH(K,w)] is

equal to the determinant of (G-25), which is easily shown to be
_ 2 2m 2m
det[SH(K,w)] = [0I (w)] [B(1+p™ ) + (1-p7)] det [Se(K’“’)]

- 1021?87 2™ get (S (K~1,w)] (G-26)

then

det [Sy(K,w)]
Egimw) = 55 (5, (K o]

det [Se(K—l,w)]

= o 2 IB(1+02™) + (1-0"™)] [0 % (w))2g%e "™

det [Se(K,w)]
(G-2T)

G-9




The limit of the ratio of determinants, using (G-12) and (G-14) is

det [Se(K-l.w)]

m
. = o2 ! L
ﬁm* _ et [Se(K,w)] = [cJI (w)] ~exp o /ln He(a,w)do,
-m
2 2., /i 7 72 — 7 !
.2 -1 |8(1+p™) + (1-p7) + VIB(1l+p") + (1-p )] - (280p)
= (o (W] 5
(G-28)
Therefore
E, (mw) =0 2] 1801+0"™ + (1-p"™)
i 282 p2m I
B1e0h) + (1-0%) + VB(IrpD) + (101 - (2807 )
(G-29)
When m = 1, this reduces to (20), as it should.
Now, when p + o, this goes to
. _ 2 _ 2 2
lim  E_(mw) = o;"(w) [B+1] = op () + o "(w) (G-30)
p=>0
again indicating no cancellation, as would be expected. When o » 1,
im  E (mw = g }(w (G-31)

o+1

which shows that the interference is completely cancelled when one of the
references is coincident with the primary. Finally, when R + o, the

noise free case,

lim  E_(mw = o () [1-p"™ (G-32)
B=+o

G-10

T




The fact that the canceller output power has the lower bound (1_p2m)

olz(w) in the noise free case can be explained in terms of the special nature
of the exponential CSD. The sequence of reference hydrophone outputs at
a single frequency can be shown to be a first order Markov sequence. As a
result, in the noise free case, the optimal canceller uses only the output of
the reference closest to the primary and achieves the bound (1- pZm) olz(w)
with that single reference. Adding further references does not reduce the
canceller output power.

The amount of cancellation achieved by the canceller is best characterized
by the minimum relative canceller output power, given by

Em(m,w)

o 2w + o %(w)

(G-33)

ER(m,w) =
where olz(w) + onz(w) is the output power of the primary hydrophone
without cancellation. Noting that

2 2 _ 2

op (W) + o "(w) = oy (w) (1 +8)

gives

1
1+8

2m

ER(m,w) = [B(1+.02m) + (1-p" )1~

282 2m
- P (G-34)
B(1+0%) + (1-p%) + \IB(1+0?) + (1-pD)1% - (2802




Figures G-2 through G-6 plot the minimum relative error given by (34) as

a function of p for values of 10 log (1/8) of 50, 40, 30, 20, and 10 4B
respectively. It can be seen that cancellation to near the noise floor,
onz(w), requires that the primary and references be very highly correlated.
This is again due to the Markov nature of the hydrophone outputs under the
exponential CSD. At high interference to noise ratio, the optimal canceller
uses only the reference closest to the primary and the output vower is
proportional to (l—pzm). Additional references have no effect. so the can-
celler depends completely on the proximity of the closest reference to the
primary to achieve cancellation. Hence, p must be very close to unity to
produce cancellation to near the noise floor. Again the curves in Figures 2
through 6 approach B/(1+8) = onz(w)/(olz(u))mnz(w)) as o + 1 because

the model maintains the ambient noise as uncorrelated from hydrophone to

hydrophone, regardless of o.

G.3 Comparison With Results for Sin X/X Cross-Spectral Density

Appendix F considered the line array structure of Figure G-1 with an

extended source producing the hydrophone CSD,

,  sinl(p-q) 22 & sin o ]
+op (W) —

(G-35)
od .
3 [(p-q) T sin 8]

2
se(p.q.w) =0, (W) qu

This represents a uniform source with angular extent *$ about the angle @O,

in the same plane as the line array. For convenience, let

Yy = YQ sin d>0 (G-36)
and
W=¢dvy (G-3D
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so that G-35 can be written

- L 2 N .2 sin [21 (p-q)W] _
Se(p,q,w) =7, (w) $oq + e (L) T(p-q)7 (G-38)

The minimum canceller output spectrum for this CSD has been determined

explicitly only for the case m = 1. In the noise free case, using the results
of Widom D2} , it has been shown that in the absence of ambient noise,
crnz(m) = 0, the canceller output spectrum, EK(l,w), aporoaches zero

exponentially with the number of references, K, if W < 1/2. Then the

minimum canceller output spectrum is
E,(1,.) = 05 6_%(w) =0, W < 1/2 (G-39)

Note that W = y9 is analogous to the product B(w)d in the exponential case.
The result given in (G-39) is a significant difference between the sin x/x

CSD and the exponential, which gave
E_(1,w) = 0,2(w) (1-02) 5 0 2(w) =0 (G-40)
oo ’ I ' “n

regardless of B(w)d. This difference is due to the Markov property
underlying the exponential CSD.
In the noise free case, cnz(w) =0, when ’21 < W< ’-—1—"2'—1- forn=1, 2, ...,

the minimum canceller output spectrum is given by

9 2W-n
E_(1,w) = 2% ¢I (w) n(1+ﬁ) (G-41)
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The primary hydrophone output spectrum without cancellation is

29 osz(u) so that the relative canceller output power for the sin x/x CSD is

1 2W-n
Ep(l,w) =n(l + =) (G-42)
This is plotted in Figure G-7 for n=1 through n=5, and shows that cancella-
tion is severely limited if W > 1/2. This sampling criterion in the noise free
case does not have an analog in the case of the exponential CSD. On the
other hand, when B(w)d > 1/2, analogous to W > 1/2, then p < .606 and the

cancellation for the exponential CSD is
2
ER(l,w) >(1-p7) = .632

so that significant cancellation is not achieved in the exponential case
either. The degradation is much more graceful in the exponential case,

however.

0.98
E_(1,w)
R

096

0.94 1 L !
05 1.0 s 20 25

* Figure G-7. Minimum Canceller Qutput Power
vs. W. for Sin x/x CSD, m =1
Interference-to-Noise Ratio = +=
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Of course, the case when noise is present is of much greater interest.
It is shown in Appendix F that for m=1, with noise present the CSD given in

(G-38) yields

2@012(w) 1 2W-n
Em(l,w) =-——2W— S(l‘*‘g) (G-43)
for
2—<W<!-1—;—1-,n=0, 1,2 ... (G-44)
and
W onz(w)
S=n+ — (G-45)
2<1>c7I (w)

For high interference to noise ratio, 2¢ clz(m)/onz(w) >> 1,

S=n, n=1, 2, ...

so that for n > 1, this reduces approximately to the noise free case, (G-42).

For W < 1/2
9 2W
2 2<I>oI (w)
E_(l,w) = 0y (W) {1+ —— » W< 1/2 (G-46)
’ 2Wo_ “(w)
n
When W = 0,
_ 2
E_(1,w) = %, (w) (G-47)
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indicating cancellation to the ambient noise floor, and when W = 1/2
E(1,0) = 0 2(w) + 20 0 2(w) (G-48)
R ™ n I

so that no cancellation occurs.

It appears that the parameter B(w)d in the exponential case and
W= (—;— ® sin d’o in the sin x/x case play a similar role, relating the distance
between hydrophones (spatial sampling interval) to the source extent (9¢)

or the CSD bandwidth, B(w). Therefore, in order to compare the behavior

of the optimal canceller with the two CSD's the irreducible relative

canceller output power, ER(l,w) was computed as a function of B(w)d

and W, respectively, using (G-34) and (G-43). Figures G-8 through G-11
show ER (1,w) for the exponential CSD for interference to noise ratios of

40 dB, 30 dB, 20 dB, and 10 dB for B(w)d varying between 0.0 and 2.0.
Figures F-5 through F-8 show ER (1,w) for the sin x/x CSD for the same
range of INR with W varying from 0.0 to 2.0. The foliowing observations may
be made regarding the figures, letting W = B(w)d for convenience;

(a) If W > 1/2 in the sin x/x case, virtually no cancellation is
achievable, as already observed. No such sampling
criterion is apparent for the exponential case, but cancellation
is still severely limited for B(w)d > 1/2. Either CSD requires
a value of W much smaller than 1/2 if the canceller is to produce
cancellation in the 10 to 40 dB range.

(b) The optimal canceller produces better results for the exponential
CSD for W larger than approximately 0.4. However, in the

important region of small W, producing more than 10 dB of
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cancellation, the canceller is better able to reject the sin x/x
source. This is due to the Markov property of the exponential
source, as discussed above.
G.4 Conclusions
The minimum canceller output power has been obtained at a single
frequency, w, for a source producing an exponential CSD along the line
array of references. In the case of m=1, where results exist for the sin x/x
CSD, the exponential CSD produces significantly different results than the
sin x/x case, as noted in (a) and (b) above. The differences between the
two reflect a Markov property inherent in the double exponential CSD. It is
likely that the differences also result from the fact that the sin x/x CSD is
produced by an angle limited source, while the exponential case results
from a source distributed on (-m,m). Like the sin x/x CSD, the source
producing the exponential CSD cannot be cancelled to an ambient noise
floor for m=1. Further, the minimum canceller output power is shown to
increase with m, just as the numerical results indicated for the sin x/x.
However, the parametric behavior of the canceller with the two CDS's
differs sufficiently that the exponential case cannot be used to predict the

canceller performance with the sin x/x CSD.
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APPENDIX H — SPATIAL RESPONSE OF THE LMS CANCELLER IN THE
PRESENCE OF AN EXTENDED SOURCE

Aithough the primary emphasis of this study has been on the
cancellation of an extended interference, without regard for the effect of
the cancellation process on a signal of interest, the eventual application
of the canceller will involve detection of a plane wave signal that is masked by
the interference. This Appendix therefore considers the plane wave response
of the cancelled output as a function of the angle of a plane wave signal. In
other words, given a primary hydrophone with unit weighting and K refer-

ence hydrophones with the frequency domain LMS weighting
-5 71 H-1
e () sq(w) ( )

what is the spatial response, or beam pattern, of the canceller output.
The spatial response at frequency, «, of an array of K+1 hydrophones

with arbitrary weighting
_ T
W) = [Wy(w), Wolw), ... Wk(w)] (H-2)

with Wk(w) the weight applied to hydrophone k at frequency « is given

by
B (4) = w+<)o1|2 H-3
w' 'S |—- wr e ( )
where
T =T w‘l lT
. - Pl = K-
d = e] ¢ 0, e] ¢ 1, cees e] ¢ (H-3%)

H-1




and
% = propagation delay to the kth hydrophone.

For the spatial cancellation problem with the array geometry of

Figure H-1,

k cos g

k=0, 1, ... K-1 (H-5)

:,;.
ola o|a

Jd cosg
S k=K

that is, the Kth hydrophone (the primary) takes the Jth position. By

the first paragraph in this section,

W(w) = (H-6)

4,
d = w (H-T)
j = d cos<ps
e
where
T
j (ﬁé—lcosq)s j u—’a(—i(K-l) cos¢S
go= 1, e ) eesy € (H-8)




Then (H-3) yields

i QJ COS ¢ . -1 2
BW((I)S) =1€ - E—l (\u) se (JJ) 90 (H_g)

Now, assume that the extended source is the uniformly distributed,
uncorrelated, narrow source defined in Appendix A, satisfying (A-26),
(A-36), and (A-40). It is shown in Appendix E that for this source,

Se_l(w) can be written in terms of its eigenvalues and eigenvectors as

K-1
s Y = z 5 6"V, (K,W) VI(K,WG} (H-10)
Yoo+ 9 A (K, W)

where vy =d/A sincb0 and

(k)

v kW = (v, ®xw, v, Pxw, ..V ® g wyiT, (H-1D)

K-1

v, @& is the kth Discrete Prolate Spheroidal

, 1, ...K-1
Sequence (DPSS) index limited to [0, K-1], and kk(k,w) is the associated

eigenvalue. Also

wd P :cosd)
d- _- ——
G = p1=a(l)g, 1, ... K-1 e € ’ (H-12)




Y

Using (H-10) gives

K-1
s s od =y —% [s;7 () 'V, (K,.))
k=0 R Gn(u,)*' OI (“)))\k(K v i)

.[Yk (Kr.d) G d~]

«d

K-1 512(”‘) M (Kow) (K . =J cos ¢
= z D) 2 VJ (K,‘J) e]
K=0 v cn(u)+ Cl(w)\k(K,u)
[V (K,») G d] (H-13)
using (E-18) and (E-19) from Appendix E. Note that
. K-1 (X) i ?“'dm (cos o, - cosop)
vV, (K,») Gd = z v KR, (H-14)
m=0
is just a Fourier transform of the DPSS.
Using expressions (H-13) and (H-14), the spatial response of the l

canceller in the presence of a uniform extended source has been evaluated
for various values of source extent,2¢ , source angular position, d>0, and
interference to noise ratio, INR. Figures H-1 through H-8 show the spatial
response when m=1, so that the reference array plus primary comprises a

uniform array, with the following parameters:

d/x» = 0.5

INR

40 dB




)
“

interference source extent = 2(°

L
R4

i

0 interference angle = 45°
The figures show the response for the number of references, K, equal
to 1, 2, ..., 8 respectively. In Figure H-1, with only one reference, the
array response only has a single null which is steered to the center of the
interference source. As more references are added (in Figures H-2
through H-8), the notch in the spatial response at 45° broadens to approx-
imately 20° wide, the extent of the source. For K < 7, this broadening
of the notch is accompanied by a considerable attenuation of the response
in other directions. For example, with K=2, there is a 15 dB attenuation
at endfire (¢=0°), even though the interference is 45° away. Gradually,
as more references are added, the notch sharpens, becoming more nearly
rectangular, and the attenuation at other angles away from the interference
decreases to a more acceptable value.

Note that once K=3 or 4, additional references do not appear to deepen

the notch very much, suggesting that further interference cancellation will

not be substantial. For the parameters given above,

=4
W--':A

sin d:o = .062

Figure K-21, which shows the canceller output spectrum as a function of
K for w=.06 and INR=40 dB, verifies that little further cancellation occurs
beyond K=3. Therefore, Figures H-1 through H-8 indicate that the reason
for adding references may be to assure adequate signal response in some
direction other than the interference arrival angles. For example, in Fig-

ure H-3, with K=3, a signal arriving at 60°, 15° away from the interference,
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suffers 25 dB of attenuation, while when K=8 in Figure H-8, the signal
attenuation is only 12 dB.

When interpretting these figures it should be kept in mind that the
primary consists of a single omnidirectional hydrophone, rather than an
array, as would be used in most sonar situations. As indicated in
Appendix L, when a primary array is used, the responses like those of
Figures H-1 through H-6 would be multiplied by the response pattern of
the primary array. This would greatly attenuate (by the primary array
sidelobe level) those regions outside the mainlobe of the primary array.
Assuming, then, that the reverberation that limits the active detection
performance arrives on or near the main lobe, the signal response in the
vicinity of the notch is of primary interest. The reason for adding
references would then be to increase the slope of the sides of the notch.

It is observed in Appendix K that as the primary is moved farther
from the references, the cancellation of the extended source degrades.
Figures H-9, H-10, and H-11, which show the spatial response for the
same case as H-1 through H-8 but with m=5, 10, and 20, respectively
confirm this. The depth of the notch is 40 dB, 32 dB, and 23 dB for
m=5, 10 and 20, respectively while m=1 gives a notch approximately 47 dB
deep. In addition to the reduction in cancellation as in increases,
Figures H-9 through H-11 show that there is a degradation in the

array response to signals arriving from directions other than the angular




5.00

1 A 1 L A A4

A1

L

-40.00 'SS.GGngggTOSE§Egygs !50930 ~13.00 -16.03 -

-43.08

i

-39

L8 20.08 49.09 d%’l%?cm_ gi'el? " mhgs 120.00 149.00 160.00 186

FIGURE H-9. Spatial Response for 20° Uniform Extended Source at 45°
d/A = .5, m=5, K=8, INR = 40 DB '




ﬁ.GO

-18.00 -5.00
i 1 I 4

1

L

-33.00 "T8" 08258438 %0280 -15.00

-40.00

1

-435.00

-30.

.90 .00 .00 o090 G900 SQE;EES 126.08  149.00 160.00 189,

FIGURE H-10. Spatial Response for 20° Uniform Extended Source at 45°
d/X = .5, m=10, K=8, INR = 40 dB




Y 1
—

¢
—

-3
I

-19.00

1

g

22888 *¥e"80 -13.00

-33.00 758 08"

§ .

-40.00

-45.00

-59.00

6.0 Ze.09 10.00 s'g.[z?‘ oL ﬁa;oé&n m—ggghggs 129.08 140.08 160.00 180.

FIGURE H=11. Spatial Response for 20° Uniform Extenced source at 45°
d/A = .5, m=20, K=8, INR = 40 dB




.00 0.00
|

-10.00 -3

i

-

Il

L 1

1

-35.00 ""587 0825836 4c%80 -15.00

-40. 20

-45.00

1

-50.00

’ ) ¥ ) t 1 | i) L
.90 20.%0 10.%9 G%YQ%HL ﬁﬁkf? N 625“283 120.89 [4e.00 160.00 (G@

FIGURE H-12. Spatial Response for 20° Uniform Extended Source at Ls°
d/A = .5, m=1, K=1, INR = 30 dB

H-18




L

-3

-19.00

L

i

Y

i

-35.00 ﬁgxggragﬁ:jggt«;s 1'509%0 -15.00

)

"45 .28 'llﬁ .20

-3é.00

R 1

8.00 20.00 40.00 gg'&?«m ﬁd'?éfgmpbrgghggs 120.00 140.09 160.00 189

FIGURE H-13. Spatial Response for Uniform Extended Source at 4sge
d/A = .5, m=1, K=8, INR = 30 dB

H-19




9.
|

-10.00 -5.
L

1

1

EE !509%6 -15.00

N

L

1

1

-350.00 -435.090 -40.00 ~35.aaﬂ5?§Tm§E§§g

2.90  20.00 40.00 é%’l%?m g;?él?g I &ghggs 129.00 149.00 150.00 189

FIGURE H-1L4. Spatial Response for 20° Uniform Extended Source at 45°
d/A = .5, m=l, K=1, INR = 20 dB

H-20



2.00

(]'"]

-5,

1

1

-403.00 ]35.oaﬁ5§grngeﬁggygs 150920 -15.00 -10.00

-45.08

L

2o

-50.

J

T T g T T ¥ 1 )
0.90 20.80 20.00 60.00  80.00 120.00 149.00 150.99 189
? STGNAL ANSLE IN (%hggs

FIGURE H-15. Spatial Response for 20° Uniform Extended Source at U45°
d/A = .5, m=1, K=8, INR = 20 dB

H-21 |




N

APPENDIX I: USE OF THE OUTPUT OF A STEERED
LINE ARRAY AS THE PRIMARY




APPENDIX I - USE OF THE OUTPUT OF A STEERED LINE ARRAY AS THE
PRIMARY

In most situations, the primary input to the optimal canceller is not
the output of a single omnidirectional hydrophone, but that of an array of
hydrophones steered in some direction of interest. The directional res-
ponse of the array will reduce the effect of reverberation arriving outside
the mainlobe by an amount equal to the sidelobe level, but reverberation
arriving in the mainlobe will remain unattenuated at the beam output.
Further, situations occur in the sonar environment in which reverberation
arriving in the sidelobes has sufficient power to prevent detection of a
much weaker signal in the mainlobe.

This Appendix considers the case when the primary input to the
canceller is the output of a line array of hydrophones, colinear with the
reference array as shown in Figure 1-1, and steered in a direction ¢ q’ as
shown. Let the N hydrophones in the primary array be uniformly spaced
dP feet apart, and let the distance between the primary and the reference

array be Ld feet, as shown in Figure I-1. The plane wave assumption
made in Appendix A is assumed to be valid over both the reference and
primary arrays.

The outputs of the N hydrophones in the primary array are denoted
yn(t) for n=0, 1, ... N-1. A beamformer steered in the direction qsd

computes its output as

N-1 q
z(t) = z a, v, (t - (N-n-1) -cp- cos cpd) (I-1)
n=0

I-1




Further, the nn(t) are uncorrelated with the ambient noise components of

the reference hydrophone outputs,

E [ny(0) n(t+o)] = 0, {720 1» -o- A1 (1-9)

Since z(t) replaces ed(t) as the primary input to the canceller struc-

ture, (A-14) becomes

rl(k, 1) = E[z(t) ek(t+r)]

N=1
d
E 2 a  n, (t-(N-n-1) —CP— cos ¢4)
n=0

N~-1 T
d
. d
+ Z a, / i{t - [(L+K-1) e ndp] cos ¢1 - (N-n-1) —(E)— cos ¢d,¢1}d¢1

T

. n, (t+7) + / i (t+Tk gcos gy 0g) ddy
-
N-1 U i d
=D a f [ Ry {1+ -2 [(N-1) cos ¢4
n=0 -1 -7

+ n (cos cpl - cos ¢2)] + g— {L+K-1] cos ¢1 - g—k cos ¢2, ¢1, ¢2} d¢ld¢2
(I-5)




Therefore (A-15) is replaced by

s (k, w) = Flry(k,1)]

N-1 m m
z a, [ / §;(¢01, ¢g» w)exp (] ‘é—’ [(L_K-1) d cos ¢,
n=0 ik S

- kd cos ¢y *+ (N--l)q,dp cos ¢y

+ ndp (cos ¢; - cos ¢ 4)]} d¢; d¢,

N-1

m ™
= / / SI(¢1,¢2,w) z a, exp {-j
A -

n=0

[e B

-[ndp(cos ¢>1 - Cos ¢d)]} exp {-j ‘é’ [(L+K-1)d cos q>1

- kd cos ¢, * (N-1) dp cos ¢4} dog dé, (1-6)

The bracketted term is just the response of the primary array, steered in

direction ¢4, to a plane wave from direction, ¢,. Denote

N-1
B ()= a el

n=0
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Figure I-1. Use of a Line Array as the Primary Input

where the a are real shading coefficients. This beamformer output
replaces ed(t) as the primary input to thé canceller. Extending equations

(A-6) and (A-T7) to the primary array gives the hydrophone outputs as

™
Yot = () + [ i [t—é [(L+K-1)d + ndp] cos ¢1d¢ (I-2)

-

where nn(t) is the ambient noise component of the output of primary hydro-
phone n. As before, the nn(t) are assumed to be zero mean, stationary

random processes with

= 0, 1, ... N-1
E [n(t) n (t+0)] = R (1) 8 770 2 om0 (1-3)




so that

m T
s (k,w) = [ f SI(¢1’ <1>2, w)B(cos 9, ~ cos ¢d)
- -

exp {-; g [(L+K-1}d cos ¢, - kd cos ¢,} do,do,
-i Y (N- -
exp (-] p (N 1)dp cos ¢d (I-8)
Comparison of this result with (A-15) shows that the case with a
primary array can be treated by placing a single primary hydrophone a

distance Ld from the nearest reference hydrophone if the hydrophone has

the directional response
= - -i 2 oeN- -
H(¢) = B(cos $-cos ¢d) exp {-] o (N l)dp cos ¢d} I-9)

This equivalent model is illustrated in Figure I-2.

Similarly, it can be seen that (A-16) becomes

N-1
r,1(1) = E [z(t) z(t+1)] = z an2 Rn(r)
n=0
N-1 N-1 U T d
+z Zanamf/RI{T——cp—n(cosq,l—cosqsd)
n=0 m=0 B S
%
+oom (cos 09 = COS 04), 4y ¢y} d¢1d¢2 (I-10)




N=1 m T
= 2 a, an(w) + f f SI(¢>1, bqo w)B (cos ¢, ~ cos ¢d)
n=0 -7 -

B*(cos ¢2 - cos ¢d) d¢1d¢2 (I-11)

This result shows that in the equivalent model of Figure I-2, the spectral

density of the ambient noise component of the primary hydrophone output

must be
N-1
2 _ 2 2
9, (w) = z a, |9, (w) (I-12)
n=0

Next, consider this model in the special cases discussed in Appdenix

A.1l. Under the narrow source approximation,

¢ ¢
si(k, w) = / fSI(d)O + 05 b9t 9y, wIB (cos (g, + 8;) = €08 94)
“o "o
W -
exp (-j o [(L+K-1) d cos (g + ¢5)} de,d¢,
« W
exp {-j Py (N-1) dp cos ¢d}

d $

wd

. e__j z— (K_L'l-k) Cos ¢O [ / SI (¢’0 + ¢19 ¢0 + ¢2! w)
-3¢ -9

(B (cos(¢0 + ¢1) - cos ¢d) exp {-j % (N-1) dp cos ¢d}]

. wd .
- exp {j “’? [(K+L-1) ¢, ~ ko,] sin ¢} d¢,do, (I-13)
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Figure I-2. Equivalent Model for Primary Hydrophone Array

and (A-17) is replaced by

N-1 m Ul
_ 2
Si() = z a, | o, (W) + / / 5;(¢4, 45, w)

_n=0 - -

3 »d,

z a exp {-j S n(cos ¢, - cos ¢d)}
[n=0
[N-1 va,

z a, exp (i e n(cos ¢4 - cos ¢d)} d¢1d¢2
| m=0




and 3

# s b
2
Sll(u)) : Oz (uJ) + [ / SI(¢0 + q)lv @0 + bz’ w)
=%

=%

B [cos(zp0 + ¢1) - COS ¢d] B*[cos((p0 + ¢2) - cos ¢d] d¢1d¢2

(I-14)

Equations (I-13) and (I-14) correspond to (A-27) and (A-28), respectively.
When the source is additionally assumed to be spatially uncorrelated

(I-13) and (1-14) further simplify to

wd ®

e (K+L-1-k) cos %0
sl(k’(ﬂ) e SI(¢0+¢’ (.0)

-¢

d
(B (cos(qb0 + ¢) - cos 4>d) exp {-j “ic—p (N-1) cos ¢>d}]

ud

exn {-j - (K+L-1-k)¢ sin % d¢ } (I-15)
and
¢ 4
Su(w) ~ Ozz(w) + /Sl(q)o + ¢, w)|B [cos(cb0 +9) - cos ¢d] !2 d¢
)
(I-16)
1-8




-

In Appendix A.2, the case when the extended source is uniformly
distributed was considered. Under this assumption, the CSD, Sy (k, w),
and the PSD, 511 (uw) assumed the simple forms given by (A-40) and
(A-41). When an array is used at the primary input and the source is

uniform as defined in (A-38), (I-13) and (I-16) become

. wd (K+L-1-k) cos % ¢ 2
sy(k, w) e ¢ / o ()

-9

d
[B (cos(¢0 + ¢) - cos ¢d) exp {-j '*’_CE (N-1) cos ¢d ]

exp {-j _cwg (K+L-1-k) ¢ sin ¢0} d¢ (I-17)
and
¢
Sn(w) = Ozz(w) + [ 012((») (B [cos(d)o + ¢) - cos ¢d]l2 dé (I-18)
-9

Hence sl(k,w) does not reduce to the sin x/x form given in (A-40) unless
B [cos(qz0 + ¢) - cos ¢4] is constant for ¢e [-¢, ¢]. That is, the form of ?
(A-40) only occurs if the directional response of the primary array is

constant, or at least nearly constant, over the extent of the interference

source.
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APPENDIX J — THE USE OF AN ADAPTIVE LMS CANCELLER IN THE
NON-STATIONARY REVERBERATION ENVIRONMENT

In practice, the second order statistics of the reverberation are not
known, and the canceller is implemented using a multiple LMS adaptive can-
celler structure as discussed in the Introduction. However, most of the
work in this report has considered the performance of an optimal (in the
least mean square sense) canceller with stationary extended source. Since
the LMS adaptive filter converges in the mean to the discrete Wiener filter,
the performance of the optimal filter can be regarded as representative of
that of the adaptive canceller if algorithm noise, sampling, and finite filter
length effects are negligible. The assumption of stationarity is necessary
for the formulation of the problem in terms of the Wiener (LMS optimal)
filter.

In a passive sonar environment, the assumption of stationarity on the
canceller inputs reasonably models most sonar problems. On the other
hand, the active sonar environment, taken as a whole, is markedly non-
stationary. A transmission cycle will consist of a transmission, followed by
periods in which reverberation from various sources (surface, bottom, con-
vergence zone, etc.) dominates the noise field. Between reverberation
periods, the ambient noise will be the primary limitation on sonar perform-
ance. It is therefore necessary to consider the effects of this non-
stationary noise field on the performance of the adaptive canceller and any
modifications to its structure necessary to accommodate this environment.

The canceller structure being discussed here is directed specifically
toward suppression of surface reverberation from the convergence zone,

If the filter is adapting during periods which the noise is due to the




ambient field or to reverberation from other sources, then the filter
weights may not be reflective of the convergence zone reverberation. In
order to allow detection of targets appearing during the onset of surface
reverberation during any given transmission cycle, the canceller must have
acquired enough information about the reverberation statistics during the

preceding cycles, and retained enough of that information between the

reverberation periods.

It is well known[u]

that the LMS adaptive algorithm adapts much more
rapidly in an environment producing correlation between its inputs (such
as reverberation from any source) than to one producing uncorrelated
inputs (such as ambient noise field would). That is, the filter "learns"
the correlation properties of an input rapidly in comparison to the way it
"forgets" those properties once the correlation disappears. Therefore, in
order to maintain the properties of the convergence zone reverberation in
the filter weights, it is first essential that all other forms of reverberation j
be excluded from the adaptation process. Because of the long range to the
convergence zone, this can be done by freezing the adaptive weights fol-
lowing transmission until all other forms of reverberation have died out,

then starting the adaptation process. Since the two way propagation time

to the convergence zone is so long, the adaptation could be started some

fixed time interval after transmission.

The question then arises as to the effect of the periods in which only
ambient noise is present on the filter weights. This can be analyzed for
a single reference structure using a simplified, approximate model, as

follows. The LMS algorithm for real weights is given by [3 ]

WN+D = [T - uX (WX ()] W(n) + ud(n) X(n) (I-1)




where
W(n) = weight vector at time n
X(n) = reference hydrophone output data vector
= [x(n), x(n-1),...x(n-M)]7T
d(n) = primary hydrophone output sequence
u = adaptation constant

Using the assumption that the present weight vector is uncorrelated with
the present data vector and averaging (J-1) yields a difference equation

for the mean weights,

E (Wn+D] = [I - uR_ (n)] E [(W(n)] *“de(“) (J-2)
where
R._(n) = E [X(m)XT(m)]
XX e
B_dx(n) = E [d(n) X(n)]

If Rxx(n) and Rdx(n) are independent of the n, then

_1R

lim E[(W(n)] = Rxx Rax

n>e

J-3

which is the discrete Wiener filter as indicated above.

Now, assume that a pulse is transmitted starting every T seconds, and
that the weights ére frozen during the period nT + T, that is, for the
T,, seconds following the start of each transmission as shown in

Figure J-1. This presumably excludes all reverberation except for
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convergence 2one from the filter surface reverberation during adaptation.
From the point of view of the adaptive weights, then, the input consists of
the intervals [nT + Tw, (n+1)T] for n = 1,2,... concatenated together as
shown in Figure J-1 to form a continuous input sequence. Suppose that this
concatenated input is sampled every T seconds to produce the inputs x(n)
and d(n).

First, consider the primary input to the canceller. Let the gate func-
tion, G(n), shown in Figure J-1 characterize the period during which the
reverberation is present. Let do(n) be the portion of the desired input
due to ambient noise and let r d(n) be the reverberation as seen by the

primary. Then

d(n) = do(n) + G(n)rd(n) J-4)

Similarly, let x o(n) be the ambient noise at the reference input and rx(n)
be the reverberation as seen by the reference. It is now assumed that the

gate function seen by the reference is just a delayed version of G(n), i.e.,

x(n) = xo(n) + G(n-4) r (n) (J-95

with A an integer. Then

X(n) =X (n) + H5(n-4)r, (n) (J-6)
where

Ko = [xo(n), xo(n-l), xo(n-M)]T (J-7

r(m =[r (n), r (n-1, ..., rx(n-M)]T (J-8)

J-5




and
HG(n-A) = diag [G(n-m-4)] (J-9)
m=20,1, M
Consequently
Rxx(n) =P I + Hy(n-8)Rpp Hé (n-a) (J-10)
and
Ryx(m) = Hg(n-0)R . G(n-b) (J-11)

where it has been assumed that the ambient noise is uncorrelated in time
with power, Pn’ and is also uncorrelated between hydrophones. RRR is
the reverberation return covariance matrix, and R dx the reverberation
return cross-correlation vector. Note that the reverberation has been
assumed stationary during the period when G(n) is unity.

Now, consider HG(n-A) for o < n <k as shown in Figure J-1.

HG(n-A) is an identity matrix if

o<n-m- A<p J-12)
form=0, 1, ... M, hence if M+ & <n <p + &

Hom-0) = LIn 8 o n s (3-13)
Thus, for p-M iterations of the filter during the first p iterations,
HG(n-A) = I. Similarly, for o < n < k,

Hg(n-8) = 0 (J-14)

J-6




if p<n-m-4<k for m = 0,1,... M. This occurs if p+M+a<n<k+4A, so that
HG(n-A) = 0 for k-p-M-2 iterations during the k-p iterations from n = p+1
to n = k-1. These arguments can easily be extended to the successive
transmission cycles.

It now is assumed that the length of the filter, M, is much less than
the reverberation duration, p, and the duration of the reverberation-free
period, k-p. Then "most of the time", G(n-2) will be either I or O, and
it seems reasonable that the short periods when this is not true will not

significantly affect the filter response. Then, approximately

HG(n-A) = G(n)I (J-15)
and

Rxx(n) = POI + G(n) RRR (J-16)

gdx(n) = G(n) G(n-a) Rdx J-17

If it is additionally assumed that the duration of the reverberation, p, is
long in comparison with the inter-hydrc;phone delay, A, then (J-11) can be

approximately written

B_dx(n) = G(n) Rdx (J-18)

without significantly affecting the results.

Using equations (J-16) and (J-18) in (J-2) yeilds

E[W(n+1)] = {I(l-uPn) - uG(n)RRR} E[W(n)] + uG(n)Rdx (J-19)




Since RRR is a positive definite symmetric real matrix, it can always

be written as normal form as

R..=prap=plap (3-20)

RR

where P is an ortho normal matrix consisting of the eigenvectors of RRR’

and A = Diag [}, %y, ... 50

H

eigenvalues of Rer

Hence (J-19) can be written as
EfW(n+D)] = ((1-4P ) +uPT Gm)AP} E[W()] + uG(mR (J-21)

Multiplying (J-21) from the left by P and letting Q(n) = P E[W(n)] yields

Q(n+l) = {(l-uPn)I - HG(n)A 1 Q(n) + uG(n)PRdx (J-22)

Since the matrices inside the brackets are diagonal, each component of

Q(n) can be solved for separately

Q(n+l) = 1 - u[P+G(n)r, 1} Q;(n) + vG(n)(PR4 ), (J-23)

The above is a piece-wise constant parameter linear system with on-off
input and on-off system parameters. Then (J-23) can be contrasted with
the approach in [11] where the eigenvalues are constant but the eigenvec-

tors are not. Here the eigenvalues of (J-19) (not the eigenvectors) are

the functions of time. Thus transforming to the eigenvectors of the data

covariance matrix allows closed form solution for the mean weights.




Now (J-23) can be solved in a piece-wise manner as follows. Letting

(PRdx)i =ay, during the time 0 <n <p (reverberation return is present)

n
_ n n-m
Qm = Qo) g + uoy > g
m=1
where
g = 1 - u(P +Y) (3-24)

g? is the discrete time impulse response of the system described by

(J-23) when G(n) = 1. The sum can be written in closed form so that

Q(n) = Q,(0) gf + vay , 0<n<p (3-25)

i l-gi
Assume, for simplicity that Qi(o) =0 all i. Then, for p<n<k,

G(n) = o and
- n-p =1 - -
Qi(n) = Qi(p) b , b=1 uPn. (J-26)

That is, when the reverberation disappears, the driving function of (J-19)
is zero.
The system decays from its value when the input disappears with

impulse response b™. After one complete period (n=k),

k-p g k-p




If one repeats the same arguments during the successive periods of G(n),

the following solution results

Qlmkp] = ———— > (g &PIF (3-28)
r=o

Q[(m+1)k] = b*P Q [mk+p]

at the switching times. In between switching times, for mk+p < n< (m+1)k

n-(mk+p)

Qy(n) = b Q;[mk+p] (3-29)

and for mk<n<mk + p

[i-g, ]

_ _n-mk i _
Qi(n) =g Qi(mk) + ua, l'gi (J-30)

Equations (J-29) and (J-30) have simple physical interpretations.
Equation (J-29) implies that, between switching times when no input is
applied, the system decays with a rate b from its value when the input
was last applied, while (J-30) implies that the system response consists of
(a) a transient response term gin-mk Qi(mk) due to the initial condition
(Qi(mk)) when the input is turned on, with decay rate g;» and (b) a
response to the input Mo with the step response of first order system with

time constant g;, (l-gin-mk

)/(l’gi).

J~10

|




As the number of iterations increases, the Qi(n) becomes periodic

with
lim Q.(n) = b~ (MK¥P) Q;(mk+p) mk+p<n< (m+1)k  (J-31)
m->
uOli gin—mk(Lgip)gk-p n-mk
lim Qi(n) =10 . + (l-gi )imk<n<mk+p (J-32)
m- o gl l'glpb p

As a check, letting m+« in (J-28) and n=mk+p in (J-32) yields equality.

Also, letting n=(m+1) and m»«, (J-31) and (J-28) yield agreement. Also

ua,
lim Q.(n) = ! , P = k (no dead time)
i 1-g.
m-ro 1
lim Qi(n) =0 » p = o (no input) (J-33)
m-> o

This result is analogous to the response of an RC filter to a periodic
rectangular pulse train as shown in Figure J-2. There is an initial tran-
sient buildup that tries approach a steady value that would occur with no
pulsing. Because of the pulsing, a decay is superimposed upon this
transient. If the response, when the pulse is on, is large in comparison
to the response when the pulse is off, the steady state value is quickly
achieved. If the reverse is true, then the weigi ts do not change signifi-
cantly. Two factors contribute to the response; the percentage of time in
each mode (duty cycle) and the rapidity of the response in each mode.

Now the rapidity of the response in each mode is given by g; and b with

=1 - A - = -
g; 1 u(Pn*' i) <1 UPn b (J-34)

J-11

~ _
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Figure J-2. Weight Response Analogy to RC Filter Response
Using (J-28), as m+=,

Uai (l_gip)
QImk*Pl = (1-g) (1-gPo"P)

(J-35)
A}
Equation (J-35) can be viewed as consisting of three factors,

o,
1

1-gi

steady-state response with no pulsing = (See Eq. (J-33))

transient response during one pulse = l-gip

-1
long term transient response = (l—gipbk_p )

J-12




Imbedded in the last factor is the time constant to achieve a periodic
steady-state. From (J-28), the factor in the sum can be written as

follows:

m p km
<gip bk'p> = <gip/k bl'i> (3-36

However, km = total no. of algorithm iterations (ignoring relatively few

iterations during one period for large k). Hence, the factor gip/k bl-p/k
is the effective time constant of the pulsed system. Now
[1-u(P_+ 1)) 5
~u(P_+ X,
e RN
| n
i ul, %
— l - -
=1 - =5 ] (1-uP ) (J-37)
But p/k is the duty cycle. If uPn <«<1 and “\l <<1, all i, then
P/k yl-p/k _ 1 P - ~1 - \, R -
g; b ~ (1 ui >\i) (1 uPn) ~ 1 u(Pn+ ik) (J-38)

Hence the response of the pulsed system is determined by the product of
4 and the sum of the noise power plus the eigenvalue times the duty cycle
(sort of the time average eigenvalue). This result is very physically
satisfying.

Alternatively, in equation (J-37), the factor (1-gip)/(1-gip bk'p) can

be viewed as the steady-state amplitude loss.

J-13
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One may now transform back to the original coordinate system to

obtain the behavior of E{W(n)]. Assuming steady-state periodic behavior

and using equations (J-31) and (J-32), for mk+p< n< (m+1)k

lim E[W(n)] = b (MK*P) gy (mk+p)]
n- '
n-(mk+p) T 1-g° 1
=Db uP” Diag 1= P | PRgx -39
i=0,1,... €; l-gip b
M-1
and for mk <n <mk+p
T 1_gip gin—mk Kop 1_gin-mk
lim E[W(n)] = uP"~ Diag i- . b M pramae PRdx
n-o 8 l-g.p b P &
! (3-40)

It is clear from equations (J-39) and (J-4V0) that the mean weights are
time varying, even in steady-state. The mean weights are periodic, how-
ever, to determine the difference between the mean weight and the Wiener
weights requires specific knowledge of P. Note, as a check, for p=Kk,

(J-40) becomes

lim E{W(n)]

n-+o

uP® Diag

!
L
i )T‘ Il
e
| S |
"
0
/

T L 1
uP Diag Lm;—)‘} PB dx

=R -1

XX Rdx = Wiener weights (J-41)

J-14




Of primary interest are the weights during the time the reverberation
is present, given by (J-39). Note that (l-gi) =1 - [l-u(Pn+?i)] =
u(Pn+ Xi), so (J-39) can be written

n-mk bk—p . (l_gin—mk)

lim E[W(n)] = P" diag | —————— g
n-w i l-gip bk P

; 1
diag {p——r+ ] PRax
i n i

1

PR

T -
P [Pn+ Al dx

1

+ PT diag P(P_+ 41" PR

dx

_5-1
- Rxx Rax

_ r1.nKk Py pT n-mk -1 ¢ _
(1-b ) P D, D, P(RXX Rix) (42

diag [g;] = diag [l-u(Pn+ Xi)]
i ;

1

1
-11- 1 k-p
1-[1-M(P+2D]" [1-WP ]

_d




where ﬁxx is the reference covariance that would occur if the
reverberation were always present.

Then the first term is just the Wiener weights that would occur if the
reverberation were always present, while the second term is a time varying
deviation of the weights due to the pulsed nature of the reverberation.
Note that since m simply defines the particular transmit cycle in which n

lies, (J-42) can be rewritten

_lR

. I -1 . k-p,,T
im E[(W(n)] =R _ Ry, + (1-b° P)PT D < Rgy)

n—»>o

n- -
1 D2 P(Rx (J-45)

with n” the time since the onset of reverberation in the current cycle.

At the beginning of the reverberation (n “=0)

. I~ -1 .k-ppT = -1 _

II:TOOE[V_\_I(p)] = Rxx de + (1-b )P D2 P(RXx de) (J-46)
while at the end of the reverberation (n“=p)

. - -1 wk-p\pT P 3 -1 .

lim E[W(n)] = Rxx de + (1-b )P D1 D1 P(R_ de) (J-47)

n-o

The conditions under which the weights converge to Rxx -15 dx are that

either
(1-b8P) = 0 >k = p

or




But
n-
- A
iy [1 u[P + i]]
D,” Dy = dx;ag P Kp (J-50)
- - A -1
1 [1 u[Pn+ -i]] [1 ”Pn]
For a filter with acceptable algorithm noise, [Pn+’\i] <<'1, so
n‘ -
D, D2 >0 (J-51)

Hence the Wiener weights, Rxx R dx’ are not reached in steady state
unless p=K, so that the reverberation is always present. This means that
the canceller performance is degraded fromthat which would be achieved if
reverberation were alwyas present at the filter input. The degradation

will depend upon the factor (l-bk_p) and upon the time varving maxtrix,

-

Dln D,, given by (J-50).

Of most interest here is the mean square error of the adaptive can-

celler, which represents the power in the output. This is given by

E(EXm)] = E[d(m)-WT(n) X(n)1?

H

E(a®(m)] - 2E[WT(n) d(n) X(n)]

+ EWE () xT(n) wm)) (3-52)

J-17




Just as in the derivation of the mean weights, (J-2), it is quite
common - to assume that the weights are uncorrelated with the present
data, so that

Ew(n)[Ez(n)] = Ela%m)] - 2W(n) Ry (m) + WE(m R__(m) W(m) (J-59)

where E denotes the expectation conditioned on W(n). In the actual

W(n)
adaptive implementation, the weights are random variable which can be

written as

W(n) = E[W(n)] + Q, (1) (3-54)

with Qw(n) the zero mean, fluctuating part of W(n). Ignoring these
fluctuations is equivalent to neglecting algorithm noise, which reduces

(J-53) to

E[E2(n)] = E[d®(n)] - 2E[W(n)] R, (n)

+ E[WT (] R (n) E[W(n)] (3-55)

If the reverberation were always present, then the inputs are

stationary, and ( ) yields the Wiener solution in steady state,

5T

_1 ~
ad ~ Rax

R (J-56)

. 2 _ B <
lim E[E“(n) = R Rxx Rix

n+o

with R dad = E[dz(n)] under the condition that the reverberation is always
present. However in the actual case, it has been shown above that the

mean weights are periodic as n+«~, and are given by equation (J-42).




This can be rewritten

. B So1 . )
lim E(W(M)] = [1-A] R;E R, (3-57)
n-»>

where
A = (1-b5PypT D" ™K pp (J-58)

The matrix, A, displays the time varying nature of the man weights.
Note that when k=p, so that reverberation is on all the time, A=0, and
equation (J-57) reduces to (J-56). On the other hand, if p=o, so that
reverberation is always present, A=l, and the mean weights are zero, as
they should be in an uncorrelated environment. Substituting (J-57) into

(J-55) under the condition that the reverberation is present gives

im (EAm)] = Ryq - Ry, Ry By, + Ry
n->e

~ _1 ~ ~ -
dx Rxx ARxx ARx

1 ~
< Rax (3-59

The first two terms are just the mean square error that would be achieved
if the reverberation were always present, from (J-56), while the second
term is the increase due to the "pulsed" character of the inputs.

Now, denote the second term in (J-59) as y and use (J-58 to write

v = (o5 P2 g7 PT p2 ™ b2 ppanytp R, (J-60

Let o, be the ith clement of Pgdx’ which is the projection of de on the

iﬁ eigenvector. Then (J-60) becomes

J-19




K-1 a; 1i 2i
y=apk Py — (3-61)
i=0 n 2i

where Dli and D2i are the iEE diagonal components of D1 and D2,
respectively, and where i is the iE£ eigenvalue of Rxx' This can be

written as

K-1 2 . 2 (n-mk)
ai[l-u(Pn+ Xi)]

v= (1-bEPy2 ¥
i=0

(J-62)

P k-p,2
(Pnﬂi) [1- (1-u(P -2;))" (1-uP ) ]

In order to evaluate the increase in he canceller output power due to the
"pulsed" character of the reverberation, it is necessary to know the
eigenvalues of R XX and the projections of R dx °" the eigenvectors of R«
Further, the increase in output power can be seen to depend upon u, but

this dependence is quite complex, as (J-62) shows.

J.1 Special Case - Narrowband Interference

Suppose that the interference consists of a single frequency sine wave

of frequency, wo, and that the array has the geometry of Figure A-1. Then

Rex %P1 a dt 4 ax dh) (3-63)

2 A .

where

[1,e14o(81)  g-ju 2(8t) o Jug (R-D(8t)T

(J-64)

J-20




where g* d = K, and for simplicity gT d = 0. Also

At = spacing between filter taps

and

B P : . _
de = _2_1_ (e']woA d+ e]woA d%) (J-65)

This special case gives

A = K P|
T (3-66)
P=[(d+d", a% af, ... ax, 17 (3-67)

where the a, are any set of orthonormal vectors or thogonal to d + d*.

Then

K .
=P , i=
a; \/; I Cos moA i=1 (5-68)

0, otherwise
Substituting (J-68) into (J-62) gives

2 MP12 2(n-mk)

(P #MP)) [1 - (1-u(P_+MP )T (1-uP )F P

- [1- (1-up )K"P]

[1- u(Pn+MPI)]




The increase in the output power will be largest when the reverberation :

first begins, n=mk, so

MP.[1 - (1-uP_)K'P;2
Ymax = I s B o cos? (mOA/Z)
(P +MP) [1 - (1-u(P +MP)F (1-uP )P

2 ‘

k-p
[1 - (1-wP) 1
n 0082 (woA/z)

]

i1 - -uMPp® (1-up ) P
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APPENDIX K — NUMERICAL EVALUATIONS OF THE LMS CANCELLER
PERFORMANCE WITH A UNIFORMLY DISTRIBUTED, SPATIALLY UNCOR-
RELATED NARROW SOURCE

Using the results of Appendix E, the canceller output spectrum for
K reference hydrophones, Ek(U), can be evaluated on the computer.
Similarly, using the results of Appendix H, the spatial response of the
optimal canceller can be determined. Evaluation of (E~20) for E, (v) and
(H-13) for the spatial response, BW(¢S), requires determination of the

DPSS, {VJ(k)} K-1 for 4> K, and the associated eigenvalues,

k=0, 1, ...

\((KW). The DPss, (v %)k w! k. for 0CK-1 are computed

k=0, 1, ...

by numerically solving the eigenvalue problem

S(K, w) !k(K,W) = "k(K,W) Y_k(K.W) (K-1)
where
- (sin_@rW(p-q) _
S(K ) = (S2LrWp-g) ) ot (K-2)
q=0, 1, ... K-1

The resulting zk(K W) are given by

(k)

T
kg (BW)]

viekw = v P aw, v Pxw, ..., v

and the Ak(K,W) are the desired eigenvalues. The V].(k)(K,W) for J > K
can then be determined by evaluating equation (E-10),

K-1

sin {2rW(n-m)] (k) N (k)
z T(n-m) Vo, (KW = )\k(K’W) Vn (K, W) (K-4)
=0




t

In the development of the narrow source model in Appendix A, it was
assumed that 9 was sufficiently that
sin ¢ ~¢

(K-5)
cos ¢ =1

where

d .
W=29 3 sin ¢° (K-6)

This restriction will be interpreted as requiring that ¢<.2 radians

(approximately 11.5°), mainly to assure that cos ¢~1. Therefore

Ww<.2$sin g <.2% (K-T)

Usually in array designs,
5<% <1 (K-8)

If d/» < .5, the ambient noise components of the hydrophone outputs will
be correlated, limiting their usefulness for increasing array gain. If the
upper limit is exceeded, then the array response will include grating lobes.
These considerations suggest that the main interest will be in values of

W <.2. Certainly, given the sampling criterion, W < .5, developed in
Appendix F, values of W > .5 will be of no practical interest. Several
cases with W > .5 will be shown, however, to illustrate the importance of

the sampling criterion.




The plots of the numerical results included here are summarized in

w) Cata

Table K-1. Each plot shows the canceller output spectrum, Ek
single frequency, W, as a function of the number of reference hydrophones
used in the canceller for a particular value of W. The results are given
for a range of values of the parameter m, where the reference array is
a distance, md, from the primary hydrophone. To determine the cancella-
tion for a particular case of interest, the hydrophone spacing is computed
in wavelengths for the frequency of interest, w. Since cancellation will
improve as W decreases, the largest value of ¢0 (the angle to the inter-
ference, always < 7/2) should be used to compute (K-6), so that the
resulting cancellation performance will be an lower bound on achievable
cancellation. The distance from the primary to the references is then
determined in units of d to provide the parameter, m.

Figures K-1 through K-5 were plotted using values of W that violate
the sampling criterion, W > 1/2, to further illustrate just how limited
cancellation is if this condition is not met. These curves clearly support
Figure F-3, which showed the irreducible canceller output spectrum, E_(1,w)

for the case m=1. Since it was also shown in Appendix D that

<

E (m,0) >E (Lw),m > 1 (K-9)

it would be expected that cancellation is also severely limited for m~1 when
W >.5.
The remaining Figures illustrate the properties of the canceller

structure derived in the preceding sections. In the presence of noise,

cancellation to the noise floor is never achieved, as predicted, and in fact




r———-—-——-——-————-——————— N

Table K-1. Parameter Values for Numerical Results in
Figures K-1 through K-62

INR
W ® 40 dB 30 dB 20 dB
1.25 K-1 - - -
1.0 K-2 - - -
.75 K-3 - - -
6 K-4 - - -
.5 -5 - - -
.4 - K-6 K-7 K-8
.3 - K-9 K-10 K-11
.2 - K-12 K-13 K-14
.1 - K-15 K-16 K-17
.08 - K-18 K-19 K-20
.06 - K-21 K-22 K-23
.04 - K-24 K-25 K-26
.02 - K-27 K-28 K-29
.01 - K-30 K-31 K-32
. 008 - K-33 K-34 K-35
. 006 - K-36 K-37 K-38
| .004 - K-39 K-40 K-41
il .002 - K-42 K-43 K-44
.001 - K-45 K-46 K-47
.0008 - K-48 K-49 K-50
| .0006 - K-51 K-52 K-53
| . 0004 - K-54 K-55 K-56
. 0002 - K-57 K-58 K-59
.0001 - K-60 K-61 K-62
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the output spectrum can be significantly above the noise floor. Appendix D

derived the cancellation floor, E _(1,.), for the m=1 case with W<1/2 as

E (1,2) = 2¢012(u)(INR)_1 [1+ %‘éV—R oW (K-10)

where 2¢012(w) is the interference power received at any of the hydro-

phones and where INR is the interference to ambient noise ratio, ’

2<I>012(w)
INR = — (K-11)

o, “(w)

The power at the primary output without use of the canceller is 2¢a12(w) +
2

n (v), so that the maximum achievable cancellation, C_(1,v), is
2y = E,(1,4) 1 INR , 2W _
C_(1,0) = = 7 71wg [l * 3w (K-12)

2¢012(w) + onz(m)

This has been computed and shown on Figures K-6 through K-62.
Figures K-6 through K-62 clearly illustrate the diminishing returns in
cancellation performance as references are added. If the cancellation floor

is significantly below the uncancelled primary output, that is, if

E_(w m=1 = E_(l,w) << 2%12((») + onz(w) (K-13)

then the performance improves dramatically with the first few references. !
However, the figures show a well defined transition point in K beyond

which the additional interference rejection afforded by adding another

K-5

% 1
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FIGURE K-36
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FIGURE K-37
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FIGURE K-40
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FIGURE K-42
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FIGURE K-43
2x10°
INR = 30 dB

W =

K-48

o
—_— o e e S o
" N ._|_ \=I ©
€ E € ~
sl

|

i |
i
m \ 1

Ity i i
.‘.\.,._\.q_‘ \”.\ ﬁ.” E\\\ ﬁ.,...\ \.\\\‘\\_\..\ \ __« __\ \ {
(i / \ \ {

S
1

3

.32

asymptote

3.39

I e e NI B P RS R s
. o ‘a. - 2°c1- arel. OQ°Lo- PR o
n v 009 ea wn:ﬂmmr:m ﬂ:;m:: m.‘_::.. : dm_c




FIGURE K-4b
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FIGURE K-45
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FIGURE K-46
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FIGURE K-48

8x10

w:

INR = 4O dB

00

1

8.90

7.40

6.9@

-

t
4.9 5.40
Bences

. OF REFE

3,90
0

nx

20

Q-

T

T
Q021 -
g

S8Rba 98835 9905 9,7

4\
- 90°2€ -

L
00 °'9E- 0D &h-

K-53




FIGURE K-49
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FIGURE K~54
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reference is quite modest. For example, with INR=40 dB and W=10-2

(Figure K-30), the first reference gives 28 dB of rejection, the second
adds 6 dB more, but the third gives only about 2 dB additional cancella-
tion. The hardware required to incorporate each new reference into the
structure is the same, and includes the computational load of computing the
weights in an adaptive implementation. Further, in a adaptive canceller,
the adaptive loop associated with each reference adds algorithm noise to
the system. This algorithm noise can actually offset the improvement
due to cancellation improvement. The choice of the number of references
must trade off the rejection added by a reference against the additional
algorithm noise and computations.

In Appendix F, it was shown that the canceller output spectrum for K

references and m=1, that is, EK(l,w) in the noise free case (orz1 (w)=0)

is asymptotic in K to

2
2‘»01 (w)

2w

2K+1

A(K,W) = [sin = W] (K-14)

Figure K-63 shows EK(I,W) for various W plotted along with A(KW) for
cnz(w)=0. It can be seen that A(K,W) is virtually indistinguishable from

EK(I,w) when an(w)=0 even for small K, so that

290 2((.0)
E (1,s) | 2 ~ [sin = w] 2K*1 (K-15)
k'’ Gn (w)=0 W
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It seems reasonable that as long as INR >»1 and the canceller output

spectrum, EK(I, .), is well above the cancellation floor,

EK(lv*) >> Em(ly‘)) (K'lG)

then the ambient noise present case should behave approximately the same
as the noise free case. The asymptote, A(K,W), is plotted on Figures K-6
through K-62 to test this hypothesis. The agreement between the plots

of EK(l,w) and A(K,W) is quite dependent upon the INR, with excellent
agreement at INR=40 dB, but with EK(l,w) as much as 10 dB higher than
A(K,W) when INR=20 dB. For INR=30 dB the maximum difference is

about 5 dB. Use of (K-14) in the ambient noise present case must be
tempered by knowledge of these errors in the approximation, but it

still provides a useful "rule of thumb”.

It would appear from the figures that the value of K at the intersection
of the cancellation floor, (K-12), and the asymptote, (K-14) gives a good
estimate of the transition point at which rapid improvement in cancellation
with additional references is no longer possible (for a given W<1/2 and
INR) for m=1. Using (K-12) and K-14), this intersection occurs at K=K,

where

. -1 R
K, = 1/2 {[log (sin 7W)1™" [2W log (1 + Tu%) - log (I—ZNW—)]-I}, W<1/2

(K-17)




When the interference-to-noise ratio is high, INR »>1, then (K-17) reduces

approximately to

K, > 1/2 {[log (sin W)l [(2W-1) log (12NTR)]—1}, w</2  (K-18)
Since the selected number of references must be an integer, and taking
into account that the intersection given by (K-18) is slightly lower than

the transition point in the figures, let

K0 = I'KII (K-19)

where X1 is the smallest integer greater than or equal to x. Choosing
the number of references, K, equal to K0 for m=1 does not mean that fur-
ther cancellation is not possible, but that further cancellation is small relative
to the increase in computations and algorithm noise. As an example, in Fig-
ure K-18 with INR=40 dB and W = .08, (K-19) gives K0=3 and K=3 produces
27 dB of cancellation. Use of five additional references (K=8) provides
only 2.5 dB more rejection of the interference, which would probably not
justify the additional computational cost or make up for additional algorithm
noise of using five more references.

The number, KI’ provides insight as to how the number of references
required in a given situation changes with W and with INR. From (K-18)
it can be seen that KI is linear in 10 log (INR), which is the interference-

to-noise ratio in dB. The slope of KI with respect to 10 log (INR) is

d K 1 2w-1

d(10 log (INR)) =~ 20 Iog(sin "W) (K-20)
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so that approximately (2W-1)/(20 log(sin "W) references are required per

dB of INR. Figure K-64 shows KI plotted as a function of 10 log (INR)
for various W. The dependence on the interference-~to-noise ratio is quite
weak when W< 01, that is, when the interferences are very narrow.

The dependence of KI or W is more complicated as shown in Figure
K-65, which shows KI plotted as a function of W for INR=20, 30, and 40 dB.

For small W (say, W<10-2) the dependence of K, on W is very weak,

I
regardless of INR. As W increases above 10-2, the value of KI begins
to increase rapidly with W, going asymptotically to infinity at W=1/2.
Recalling from Section 3.3.1.1 that no cancellation is possible when
W=1/2, it would be expected that K{>* at this point.

Now, suppose the criterion K=K0 is used to select the number of
references used in a given situation. Figures K-66 shows that the can-
cellation achieved is within several dB of the cancellation floor, (K-12) for

this choice of K. In fact, it can be seen that the value of EKO(I,m) is

very nearby log (INR) dB above the floor, so that

E. (L)~ (INR)'T E_(1,0) = 280 2@)(INRY™? [1 + BR2W ¢ o)
KO 1 2W

provided that (INR)'' E,(1,4) < 200 %) + o %(.). This condition just

assures that the approximation is not used when it would produce an
apparent increase in the interference power relative to the uncancelled
primary output. If INR 1 and W<1, as it will be in all cases of interest,

(K-21) can be approximated as

Eg (L) = 200 %) aNry™W ™9 (ow)™ W
0

2
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2w

For 0<W<1, (2W) “" is within about 1.6 dB of unity, so

E, (1,») * 200 2(w) (INR)ZW™+9 (K-22)
K0 1
The cancellation achieved is then approximately
E, (1,w)
K 2W+.1 _
Cyp (1,0) = —5—2 — * WRL—— = vy (k-2
0 o, (W) + 2997 (w)
n

for INR>>1. Expressed in dB, this yields

10 log Cyx (1,w) % -.9 [10 log (INR)] + 2W [10 log INR] (K-24)

0

The interference rejection in dB varies approximately linearly with both
the interference to noise ratio in dB and the parameter W. This result is
valid over the range 10 *<W<.45 and 102<INR< 10°.

Further inspection of Figures K~6 to K-62 shows that for any given
values of W and INR, the curves of EK(m,w) have roughly the same shape
as that of EK(l,w), and, in particular, have approximately the same
transition point in K. This suggessts that K0 may be a suitable guide for
the selection of the number of references, K, even when m>1. It can be
seen from the figures that for m>>1, Ex(m,u) continues to fall off some-
what faster than EK(I,w) for K>Ko. For example, in Figure K-31, with
W = .01 and INR = 103, Ky = 2 which yields 10 log Co(1,w) = -25.5 dB.
Six additional references give 10 log Cg(1,0)=-27.5 dB of cancellation, so

the choice of K=K0 seems justified. However, for m=5, K=K0=2 gives

10 log C4y(5,w)=16 dB of cancellation, while K=3 yields 19 dB and K=5,
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22 dB of cancellation. Of course, there will always be some ambiguity as
to how much more rejection must be provided by a new reference to justify
its use. Certainly, in any given design situation K0 can be used as a

design guide, with final choices made by consulting the curves in

Figures K-6 through K-62.
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